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Intersection Point 
 
Sixteen years ago, the newly-formed UCSD Department of Cognitive Science, the first 
of its kind in the world, welcomed its first graduate students. The graduate program's 
mission has been to train researchers in the study of intelligent activity - whether 
carried out by humans, machines, or social groups - using a multidisciplinary approach 
informed simultaneously by current knowledge about the brain, behavior, and 
computation. While this mission remains steadfast, some practical aspects of doing 
research in cognitive science have changed since those formative days. 
 
One such change has been a continued explosion of knowledge in each of cognitive 
science’s contributing disciplines. This is the result of various advances including: the 
development of functional brain imaging; the sequencing of the human genome and the 
discovery of alleles associated with variation in cognition and behavior; the diffusion of 
digital videography, allowing fine-grained analyses of motor and social behaviours; and 
enormous increases in the power of computational systems to store and process 
information. This accumulation of new knowledge has accentuated more than ever one 
of the "special burdens" for researchers in such an interdisciplinary field - namely, "to 
be knowledgeable in and sympathetic to a large variety of fields and techniques" (as 
pointed out by the Introduction to the new Department in the 1989 UCSD Catalog). The 
challenge of keeping up to date with important findings is exacerbated by the sheer 
increase in volume of new literature - for example, by one estimate the number of 
scientific journals increased from 2,800 in 1960 to 6,800 in 1995.1 Amidst this 
ballooning of scientific knowledge the challenge of integrating the contributions of 
neuroscience, psychology, anthropology, linguistics, artificial intelligence, and 
philosophy into one cohesive multidisciplinary field is more daunting than ever. 
 
This burden has become manifest in a variety of forms.  At recent meetings of the 
Cognitive Science Society, for instance, attendees may have noticed a strong division 
between computationally- and behaviorally-minded researchers, few venturing outside 
their respective symposia (neuroscientists are generally absent from CogSci meetings).  
One of CSO's editors was surprised to find his old friend and AI professor on the final 
day of CogSci 2004 - the meeting had been so compartmentalized that they had not 
seen each other in two full days of presentations. 
 
Nowhere is the burden more apparent than in our graduate curricula.  Cognitive science 
students face the challenge of integrating a mixture of techniques, theories, and 
findings, whose potential interrelationships may not be immediately apparent from their 
primary sources. Moreover, the skills necessary for successful research in any of 
cognitive science's sub-disciplines have limited applicability to others – for example, a 
student who is gifted at designing neuroimaging experiments may struggle with 
cognitive semantics. 
 
The expanding breadth of our field is also apparent in the current issue of CSO.  We 

                                                 
1 Tenopir, C., & King, D. W. (2000). Towards Electronic Journals:  Realities for Scientists, Librarians, and 
Publishers. Washington, D.C.: Special Libraries Association. 
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imagine that the intersection of readers who find both articles interesting and relevant 
may be small.  Even as our journal seeks to "represent the diversity of ideas floating in 
our highly variegated field of cognitive science, as too often the lines that have 
traditionally partitioned its sub-disciplines begin to form impenetrable barriers" (as set 
forth in the inaugural Letter from the Editors),2 we wonder whether we are truly 
succeeding in breaking these barriers. 
 
The burdens of our multidisciplinary approach do not simply disappear by gathering 
Cognitive Scientists into a unifying department, organizing conferences, or showcasing 
diverse findings in an online journal.  Rather, special efforts must be undertaken to 
make research in the various sub-disciplines more accessible to one another. 
 
One such integrative effort, currently in development at UCSD, is the incorporation of 
"Datablasts" into departmental gatherings.  These quick (<20min), refreshing talks are 
intended to inform a general audience about current ideas and practices within our far-
ranging field.  Since Datablasts are presented at department-wide functions, students 
and professors are exposed to research outside their regular circuit of lab meetings and 
lecture series, in an informal and interactive setting. 
 
Another, more light-hearted channel that may facilitate communication across our sub-
disciplines is introduced in this edition of CSO:  Cognitive Science Movies.  This index 
of over 100 popular films encompasses a wide variety of cognitive science themes.  
Movies, having universal appeal, may serve as starting grounds for discourse between 
traditionally segmented areas.  Starting this quarter, the UCSD Cognitive Science 
Department will also be hosting Movie Nights, intended to foster more integration and 
community within our multidisciplinary program. 
 
However, even the most valiant institutional efforts to unify cognitive science's 
burgeoning subject matter will not lift the burden from its individual researchers.  We 
are each responsible for upholding the multidisciplinary torch, to seek and to appreciate 
research outside our familiar avenues, and to make special efforts at learning new 
experimental and observational techniques. 
 
We hope that CSO, as a forum "representing the diversity of ideas" in cognitive 
science, reminds us of our "special burdens," but more importantly, provides our 
readership with the opportunity to become better-informed multidisciplinary thinkers. 
 
    Michael Kiang & Benjamin Motz 
 
    Department of Cognitive Science, UCSD 
 
 
 

 

                                                 
2 Lovett, C., Saygin, A. P., & Yu. H. (2003). Letter from the editors. Cognitive Science Online, 1, p. i. 
http://cogsci-online.ucsd.edu/1/vol1_issue1.pdf 
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Abstract 

We present a biologically-inspired system for real-time, feed-forward object 
recognition in cluttered scenes. Our system utilizes a vocabulary of very sparse 
features that are shared between and within different object models. To detect objects 
in a novel scene, these features are located in the image, and each detected feature 
votes for all objects that are consistent with its presence. Due to the sharing of 
features between object models our approach is more scalable to large object 
databases than traditional methods. To demonstrate the utility of this approach, we 
train our system to recognize any of 50 objects in everyday cluttered scenes with 
substantial occlusion. Without further optimization we also demonstrate near-perfect 
recognition on a standard 3-D recognition problem. Our system has an interpretation 
as a sparsely connected feed-forward neural network, making it a viable model for 
fast, feed-forward object recognition in the primate visual system. 

 

Introduction  

Efficient detection of multiple objects in real-world scenes is a challenging problem 
for object recognition systems3. Natural scenes can contain background clutter, 
occlusion, and object transformations which make reliable recognition very difficult. 
In this work we develop a system that efficiently and accurately recognizes partially 
occluded objects despite position, scale, and lighting changes in cluttered real-world 
scenes.  

Most modern recognition approaches represent specific views of objects as 
constellations of localized image features. The Scale Invariant Feature Transform, 
SIFT, is a well-known example (Lowe, 2004). In this approach, gradient histogram-

                                                 
3 Authors occasionally make a distinction between recognition (what is this object?), detection (e.g., is a 
face somewhere in this image?), and multiple object detection (is any of a set of known objects in this 
image?). In this paper, we use the generic term recognition to refer to all of these problems. 
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based SIFT descriptors are computed at Difference-of-Gaussian keypoints and stored 
along with a record of the key-point’s 2D location, scale, and orientation relative to 
the training image. To detect an object in a new image, an approximate nearest 
neighbor search matches SIFT descriptors extracted from the image, and a Hough 
Transform detects and roughly localizes the object.  

To improve performance for multiple objects, similar approaches have employed a 
quantized feature vocabulary4, such that the set of features is shared across different 
object models (Murphy-Chutorian & Triesch, 2005). In this approach, every extracted 
local feature is compared to a much smaller set of vocabulary features by a fast 
nearest neighbor search, and a reference is stored with the key-point’s 2D location 
relative to the location of the object. As the number of objects increases, the number 
of shared features need not grow proportionally. This benefit from shared features has 
been corroborated in a boosting framework (Torralba, Murphy, & Freeman, 2004). 
These authors demonstrated that by allowing only a fixed number of total features, 
using such shared features greatly outperforms a set of classifiers learned 
independently for each object class. Vocabulary-based recognition systems have also 
been proposed for single object recognition and image retrieval (Agarwal, Awan, & 
Roth, 2004; Leibe & Schiele, 2004; Sivic & Zisserman, 2003). This paper presents a 
novel framework for sharing multiple feature types, such as texture and color features, 
within and between different object representations. We learn probabilistic weights 
for the associations between features and objects so that any feature, regardless of 
type, can contribute to the recognition in a unified framework.  

An interesting debate regarding the aforementioned recognition approaches is the 
question of how invariance to transformations (position, scale, rotation in plane, 
rotation in depth) should be achieved. On one end of the spectrum are approaches that 
try to hard-wire such invariance into the system by using invariant features. At the 
other end are approaches that try to learn certain invariance directly from training 
data. Our approach takes an intermediate stance, where position invariance is built 
into the system, and invariance to scale and pose are learned from training data.  

 

System Overview 

In brief, our system works as follows. During training, it creates a set of weighted 
associations between a learned set of vocabulary features and the set of objects to be 
recognized. During recognition, vocabulary features that are detected at interest points 
in the image cast weighted votes for the presence of all associated objects at 
corresponding locations, and the system detects objects whenever this consensus 
exceeds a learned threshold. In the following sections we describe these steps in more 
detail. 

Feature Vocabulary  
The recognition system uses a vocabulary of local features that quantize a potentially 
high-dimensional feature space. Our implementation uses color and texture feature 

                                                 
4 The term vocabulary is analogous to the feature dictionary used in previous work (Murphy-Chutorian & 
Triesch, 2005).   
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vocabularies. The color features are represented as 2D hue saturation vectors, 
corresponding to the local average of 5x5 pixel windows. The Euclidean distance in 
polar hue-saturation coordinate space provides the basis for comparing color features. 
To learn the color feature vocabulary, we extract color features at the locations of 
objects in a large training set of images and cluster them with a standard K-means 
algorithm to arrive at our 500 entry color feature vocabulary.  

The texture features are 40-dimensional Gabor jets (Lades et al., 1993) comprised of 
the magnitude responses of Gabor wavelets with 5 scales and 8 orientations, for 
details see (Murphy-Chutorian & Triesch, 2005). For vertically or horizontally 
oriented Gabor jets, the necessary convolutions can be efficiently calculated with 
separable filters. For all other orientations, the image can be first rotated and then 
processed with the same filters. Our implementation processes all 40 convolutions in 
approximately 200ms on a 2.8Ghz computer. To compare two Gabor jets, x and y, we 
use the normalized inner product,  

 

     (1) 

which is robust to changes in brightness and contrast. By normalizing the vectors and 
computing only the inner product at runtime, the calculations are reduced.  To learn 
the Gabor feature vocabulary we extract many Gabor jets at interest point locations 
from around the objects in a large set of training images. As an interest point operator 
we choose the Harris corner point detector which is highly stable over multiple views 
of an object (Harris & Stephens, 1988). We use a modified K-means clustering to 
compute a 4000 entry Gabor jet vocabulary. The modification of the K-means 
clustering consists of normalizing the jets to unit magnitude following each iteration 
of the algorithm. 

Given either feature type, finding the nearest vocabulary features that best represent it 
requires a nearest neighbor search in a 2-, or 40-dimensional space, respectively. An 
approximate kd-tree algorithm accomplishes this efficiently (Mount & Arya, 2005). 
We have found that the system performs optimally if we use the six nearest Gabor jets 
and the single nearest color-jet for each respective vocabulary query. As a 
consequence, our initial encoding of the image in terms of its features is extremely 
sparse with only 6 out of 4000 Gabor features or 1 out of 500 color features being 
activated at a given interest point location.  

Transform Space  
A 2D-Hough transform space (Ballard, 1981; Lowe, 2004) ~partitions the image 
space into a set of regions or bins for each object. During recognition, the detected 
vocabulary features cast weighted votes for the presence of an object in a specific bin, 
storing the consensus for classification5. The optimal size of the bins will be discussed 
in its own section.  

                                                 
5 To avoid the problem of boundary effects from the discrete Hough bins, each feature votes for a bin and 
its 8 neighboring bins. 
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Feature Associations  
Initially, we develop a sparse set of associations between the features and objects. If 
an object and feature are both present in a training image, the system creates an 
association between the two. This association is labeled with the distance vector 
between the location of the feature and the center of a manually drawn bounding box 
around the object, discretized at the level of the bin spacing. Duplicate associations, 
(i.e. same feature, same object, same displacement) are disallowed. Once all of the 
training images have been processed in this way, the system begins a second pass 
through the training images to learn a weight for each of the associations. Assuming 
conditional independence between the inputs given the outputs, Bayesian probability 
theory dictates the optimum weights are given by the log-likelihood ratios,  

 

 (2) 
 
where Xf  is a Bernoulli random variable describing the presence (Xf = 1) or absence 

(Xf = 0) of feature f in the scene, and Ym d
�

  is another Bernoulli random variable 

indicating the presence or absence of object m at a discretized spatial offset d
�

from 
feature f 6. Figure 1 shows the distribution of the log-likelihood weights for the color 
and the texture features. Not surprisingly, the higher-dimensional texture features tend 
to be more discriminative as they have a higher average log-likelihood weight.  

 

 
 
Figure 1. Distribution of Log-Likelihood Weights for each feature type  
 
Optimum Detection Thresholds  
During recognition, all of the detected features cast weighted votes to determine the 
presence of the objects. If any Hough transform bin receives enough activation, this 
                                                 
6 It may seem at this point that a naive Bayes rule expansion could be applied with these log-likelihood 
ratios and known priors to obtain the posterior probability than an object is present, but the underlying 
conditional independence assumption is highly erroneous in our case and leads to rather poor performance.  
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suggests the presence of the object. To determine a detection criterion, we develop 
optimum thresholds from the maximum a posteriori (MAP) estimator under Gaussian 
assumptions. Let Ym be a Bernoulli random variable describing the presence of the 
object m and let tm be a continuous random variable corresponding to the maximum 
bin value in the Hough parameter space of m. The MAP estimator, �m, describes the 
most likely value for ym given the value of tm: 

              

 
 

where P(ym) is the prior probability that Ym = ym, and p(tm| ym) is the conditional pdf of 
tm given Ym = ym. We then define the optimum threshold, �m, as the value of tm which 
satisfies  

              (5) 
 

For tm > �m it is more probable that the object is present in the scene, and for tm < �m  it 
is more probable that the object is absent. Assuming that p(tm | ym) is a Gaussian 
distribution, we can fully determine p(tm | Ym = ym) knowing only the first and second 
order moments, �ml and �2

ml, where l = 1 if the object is present. We estimate the 
moments from the training data and find �m by solving the quadratic equation:  

 

     (6) 
 
where p = P(Ym=1).  Assuming �m1 > �m0 and �2

ml > �2
m0 as is always the case for our 

data, the solution is given as  

    (7) 
with  

  

Experiments and Results  
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The CSCLAB cluttered scenes database was used to test the performance of our 
system (Murphy-Chutorian & Triesch, 2005). It consists of 500 scenes of 50 everyday 
objects against cluttered, real-world backgrounds with significant occlusion. Each 
scene contains 3 to 7 objects as shown in Figure 2. The objects are presented at 
roughly the same viewpoint in every scene, but there remains differences in depth, 
position, rotation, and lighting. The depth changes cause considerable scale variation 
among the object classes, which vary by a factor of two on the average. The system 
learns scale-invariant representations by building a conglomerate set of associations 
from training images of objects at representative scales. Alternatively, it could be 
trained with fewer scenes, explicitly presented at multiple scales (Burt & Adelson, 
1983). In addition, the database contains scenes of all ten backgrounds without 
objects, as well as scenes of every background with each object by itself. All of the 
scenes have associated XML files that store the manually-labeled bounding boxes and 
names of the objects for supervised training and evaluation.  

The dataset was split into three sets. The first set contained 100 multiple object scenes 
which were used to create the feature dictionary. The second set contained 100 
additional multiple-object scenes and all of the individual object scenes. This set 
provided the training data for learning associations between vocabulary features and 
objects and the corresponding weights. The third set, containing the remaining 200 
multiple-object scenes, was presented to the system for recognition.  

 
 
Figure 2. Labeled Example Scene from the CSCLAB dataset  

 
Feature Sharing  
Figure 3 demonstrates the amount of feature sharing in the learned representations for 
the 50 objects from the CSCLAB data base. In Figure 3(a) we show histograms of 
how frequently a feature is shared between representations of different objects. 
Interestingly, there is a sizable fraction of features that are shared by many objects, 
and only few features are not shared at all, i.e. they are specific to one object only. 
Figure 3(b) shows how often a feature is shared within one or multiple views of a 
single object. Noting that there are no duplicate associations, this denotes the number 
of associations between this feature and the object with different discretized 
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displacements. One can see that this intra-object sharing is happening less often than 
the inter-object sharing, but this is a meaningless ratio, since it directly depends on 
our choice of the Hough bin size and number of objects.  

 

 
(a) Histogram of inter-object sharing, showing the number of objects that connect to 
each feature for color-jets (left) and Gabor jets (right).  
 

 
 (b) Histogram of intra-object sharing, showing the number of times a feature 
connects to the same object for color-jets (left) and Gabor jets (right).  
 
Figure 3. Feature Sharing  
 

Optimal Bin Size  
The optimal size of the Hough transform bins is determined by a trade-off between 
two competing factors. If the bin size is too small, votes from the same object may 
fall into different bins because of variations in object appearance such as scale or 
rotation. Larger bins, however, increase the risk of a spurious accumulation of votes 
from background clutter or unrelated objects into a single bin, which can lead to a 
false positive detection. Because of this trade-off, there exists an intermediate bin size 
that yields optimal performance (Aboutalib, 2005). We investigated this effect by 
systematically varying the bin size7. Figure 4 shows the result. The tradeoff favoring 

                                                 
7 In this experiment we kept the bin size fixed for every object, but an object specific selection of the bin 
size may further improve performance. 



Cognitive Science Online, Vol.3.2, 2005                                                                    8 

�

intermediate bin sizes is clearly visible. Based on this result, we use 16x16 pixel 
Hough transform bins to maximize recognition. 

 
 

Figure 4. Area under the averaged ROC curves for various bin sizes  
 

Recognition Performance  
Figure 5 and Figure 6 show histograms of the detection rates and false positive rates 
for the 50 objects in the CSCLAB dataset. The detection rate is defined as the fraction 
of objects that were successfully detected, and the false positive rate is the fraction of 
images in which an object is incorrectly detected. In this application, the system is 
able to detect most of the objects more than 80% of the time while maintaining less 
than a 5% false positive rate. The system has the most difficulty with the objects that 
lack sufficient texture, or have significant transparencies. Performance examples are 
shown as ROC curves for the best, median, and worst individual ROC curves are 
given in Figure 7. Figure 8 shows an average of the spline-interpolated ROC curves 
for all of the objects. In the course of the experiment, 10 of the 50 objects were 
perfectly recognized with a 100% detection rate and no false positives. Figure 9 
provides examples of the system’s recognition ability. On a 2.8Ghz personal 
computer, our system requires approximately one second to recognize all of the 
objects in a 640x480 pixel image.  

 
 
Figure 5. Histogram of the individual object detection rates at optimum thresholds  
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Figure 6. Histogram of the individual object per-image false positive rates at 
optimum thresholds 
 
Neural Network Interpretation and Relation to Models of Biological Object 
Recognition  

It is frequently argued that the remarkable speed of primate object recognition 
suggests a processing architecture that is essentially feed-forward in nature, and 
prominent models of biological object recognition are feed-forward processes 
(Fukushima, Miyake, & Ito, 1983; Riesenhuber & Poggio, 1999). Feed-forward 
models are unlikely to be able to account for all aspects of primate object recognition, 
but they may be a reasonable approximation in many situations.  

We can interpret our system as a simple feed-forward neural network. In this case, the 
input layer consists of the vocabulary features at every possible discretized location. 
The output layer consists of the objects at every possible Hough bin. The activation of 
an output node, yj = y(mj ,qj ), is given by the linear summation,  

 

        (9) 

and the weights of the network are the log-likelihood ratios of the features mentioned 
earlier. In this context, xi is the ith binary input node that “fires” whenever the shared 
vocabulary feature, fi, is found anywhere inside the unit’s “receptive field,” and wij is 
the weighted connection between yj and xi. pi is the location of input xi, and qj is the 
location of yj . We assume wij = 0 whenever yj and xi are not connected. Although the 
weighted connections are learned from the relative displacement between the input 
and output nodes, this can be interpreted as weight sharing in a neural network with 
connections based on absolute displacements.  
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Figure 7. ROC curves and estimated conditional pdfs (black: object absent, gray: 
object present) for individual object examples  
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Figure 8. Averaged ROC curve for all 50 objects  

The feed-forward neural network interpretation of our system suggests that one could 
view it as an abstract model of primate object recognition. In fact the introduction of 
Gabor wavelet features into computer vision systems was inspired by biological 
findings. In this context, our shared Gabor jet features loosely correspond to shape 
selective cells in area V4. Compared to the other models mentioned above, the 
binning operation inherent in the Hough transform mechanism corresponds to non-
linear operations that introduce a degree of shift invariance in the above models. The 
sparseness of connections from these features to object detectors (corresponding to 
populations of cells in inferotemporal cortex) is also in line with biological 
considerations, but in stark contrast to many previous models of biological object 
recognition, we obtain excellent performance on a difficult real-world recognition 
problem. To do so in real-time paves the way for the development of more elaborate 
models of visual cognition that model object recognition and learning in the context 
of ongoing behavior.  

 

Discussion  
We presented a new framework for multiple-object detection with a vocabulary of 
shared features. Using multiple feature types and sparse, weighted associations 
between vocabulary features and objects, we demonstrated object detection in 
cluttered real-world scenes despite significant scale variation and occlusion in real-
time. Since the system can be interpreted as a feed-forward neural network, it may be 
viewed as an abstract model of object recognition in the primate visual system, 
although this was not the main focus of this research.  

In a full 3-D recognition task on the otherwise much simpler COIL database, our 
system showed excellent performance. Evaluating our system on a full 3-D 
recognition problem that also includes clutter, occlusions, and lighting variations 
remains a topic for future research. At present, there are no available benchmark 
databases of this kind. Performance gains could be achieved by the addition of other 
feature types. Transparent objects and objects lacking unique texture and color were 
the most difficult to detect, and this could be remedied by the addition of features that 
could detect these objects by their characteristic shape. The framework presented in 
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this paper easily accommodates additional features. A further avenue for future 
research is the incorporation of stereo information and the explicit modeling of object 
occlusions (Eckes, Triesch, & Malsburg, 2005).  

We would also like to investigate the ability to learn objects with only minimal 
supervision, since hand-labeled training data as we have used here is tedious to create. 
Recent pilot work has demonstrated this system’s potential for learning object 
representations in a semi-autonomous fashion through online demonstration, where 
objects are simply shown to the system for an extended period of time as they 
undergo scale and pose changes and the system detects, tracks, segments, and learns 
to recognize these objects without additional human intervention (Murphy-Chutorian, 
Kim, Chen, & Triesch, 2005).  

 

 
 
Figure 9. Example Recognition Results (squares indicate the estimated object center)  
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Abstract  

This paper examines diagrams as academic and theoretical tools. 
Drawing upon the work of Gilles Deleuze and Felix Guattari (1987), 
a diagram is defined as an abstract machine for constructing 
arguments.  The theoretical diagram provides neither a direct 
representation of the natural world nor a representation of a natural 
data set, but a suggested theoretical walk through a landscape of data.  
It is a tool for learning how to see, how to reason, and how to narrate.  
The paper begins with a closer examination of diagrammatic thought 
and the ways in which diagrams differ from other visual 
representations.  It then introduces Vannevar Bush (1945) and 
follows his idea of associative trails through more recent attempts at 
modeling semantic associations (Semantica Inc., 2005) and the use of 
“trails” as narrative markers in the sequential art of comics 
(McCloud, 1993).  These trails, in turn, lead to a discussion of 
academic work practices, trajectory (Strauss, 1993), and the means of 
navigating information ecologies (Hutchins, 1996; Bowker & Star, 
1999).  Finally, the path returns to visualization practıces, where it 
uncovers diagrams as a distinct strategy which scholars may employ 
as a method of analysis.  Along the way, diagrams are offered as both 
examples and theoretical models.  For, among their other benefits, 
diagrammatic models construct a visual language and represent what 
is difficult to express in prose. 

Introduction 

Perhaps out of a desire for intelligibility, we can imagine that, in order to follow a 
complex trajectory, the human mind begins with simple elements and constructs a 
cultural object, which outlines both constraints to which it must submit and choices it 
is able to make 

          – adapted from A.J. Greimas (1987, p. 48)8   

                                                 
8 The opening quote has been reorganized and adapted from the explanatory note of Greimas’ (1968) essay 
“The Interaction of Semiotic Constraints,” which introduces the structure of the now famous semiotic 
square. In adapting the quote for the purposes of this paper, I have switched the position of two phrases: 
“construct a cultural object” and “follow a complex trajectory.” The original quote, which functions to 
explain a quite different purpose, is presented below with the altered sections highlighted in italics. 

“Perhaps out of a desire for intelligibility, we can imagine that, in order to achieve the 
construction of cultural objects (literary, mythical, pictorial, etc.), the human mind begins with 
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By altering Greimas’ note as my opening quote, I also wish to reorganize a corner of 
discussion regarding visualization strategies. The “cultural objects” to be examined 
are theoretical diagrams in the social sciences, and the “complex trajectories” are the 
methodologies of study which these diagrams represent. These diagram objects—such 
as Greimas’ (1987) own semiotic square, Fauconnier and Turner’s (2002) basic 
“blending” diagram, and models of communication transfer—provide trajectories 
which scholars may utilize in analyzing data. But this is not to say that diagrams force 
data into a particular form. Much criticism has been directed toward structuralism and 
its attempts to force data into pre-constructed molds. But rather than viewing the 
diagram as a closed structure, I ask what the diagram opens up. A diagram is not a 
stamp placed upon the data. A diagram, as the opening quote suggests, offers a series 
of choices and constraints, a roadmap of choices for navigating through data. And like 
geographic maps, diagrams only provide a possible outline or itinerary; they do not 
determine the specifics of how a journey will unfold.    
 
More generally, I wish to disengage diagrams from the burgeoning field of 
information and data visualization. Visualization research revels in producing new 
pictures of large data sets. These images map collected datasets and present a new 
view of the evidence. But this experimentation of imagery depends upon a data 
collection, which can be isolated and quantified. The graphic diagram examined in the 
following pages, however, offers something quite different: the opportunity to present 
theoretical models in a visual format beyond the formality of written language. 
Diagrams contain language, but they break the grammar of language. They replace 
the relations of words and concepts with lines, arrows, and shapes. Decisions, 
regarding what language to include and what language to replace, rest upon the 
qualitative judgment and critical choices of those drawing the diagram. The positions 
of diagram terms are critically chosen from the beginning rather than mapped by a 
computer for later manipulation. Indeed, the critical positioning of terms, the spatial 
topology of the diagram, imbues the diagrammatic image with a sense of coherence 
and meaning.    
 
What, then, is a diagram? In the following discussion, theoretical diagram maps an 
argument such that it can be approached and contemplated as an image. All images, 
including evidential photographs and visualized datasets, provide an argument: a 
series of choices as to what will and what will not be included. But the diagram 
entails not only a choice of framing but the additional choices of layout and relation 
as well. A drawn diagram offers a narrative argument, a story of what moving across 
the image entails. Lines and arrows display a functional relation between terms: this 
path can be followed in this way. One aspect of academic work, I suggest, is the 
practice of building methodological tools for navigating ecologies of information. 
And a diagram is a visual representation of these navigational trails. As the opening 
quote suggests, diagrams are cultural objects composed of simple elements, and these 
simple elements allow human cognition to follow a complex trajectory. The diagram 
is neither a direct representation of the natural world nor a natural data set, but a 
suggested theoretical walk through the landscape of data.   
 

                                                                                                                     
simple elements and follows a complex trajectory, encountering on its way both constraints to 
which it must submit and choices it is able to make.” (p. 48) 
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To guide this walk, a model is drawn. This model cannot predict the events and 
encounters of a specific stroll, but it can guide the trajectory. It outlines a method for 
recreating the path at a latter date, if not the specific expressions. This ability to 
recreate a type of experience parallels the abstract machine of Deleuze and Guattari 
(1987): “The abstract machine is pure Matter-Function—a diagram [italics added] 
independent of the forms and substances, expressions and contents it will distribute” 
(Deleuze & Guattari, 1987, p. 141).9 A diagram is a function of matter, a model for 
shaping matter. Diagrammatic machines shape matter into a form of expression, and 
the contents of expression are inextricably tied to the form of their expression 
(Deleuze &Guattari, 1987). The operations involved in forming an expression are 
distinct from the contents that form makes possible. These operations are 
diagrammatic, and their image constitutes the diagram. By way of example, imagine 
the patent process. In order to patent a machine, a required drafting diagram presents 
an outline of its construction and functioning. Patents rely upon drawn mechanical 
arguments because these drawings model the consistent creation, repair, and 
replacement of a type of machine. Each machine created from a patent diagram is a 
specific object, a specific content and form of expression. But a single diagram 
provides the model by which these machines are built. The diagram outlines the 
operations which bring this form into being. Similarly, social science diagrams are 
operational models for the construction of a narrative argument. Like patent drawings, 
they show each component of the argument form, and how it fits together with other 
components. By modeling a stable form, they allow it to hold content. But, unlike 
patent drawings, the content is not a physical machine; the content is a series of 
thoughts: “Diagrams are simple drawings or figures that we think with or through” 
(Knoespel, 2001, p. 146). Reading a diagram, the viewer asks: What does this line 
mean in terms of my argument? What part of my argument does this shape represent? 
By answering these questions, theorists think through a diagram and build expressions 
in the form of diagram models. A diagrammatic form outlines a model, but the 
specific expression arises through the act of building. Thus, diagrams both formalize 
thought and provide a means of discovery. Indeed, the thinking through of a diagram 
is precisely what formalizes the discovery.  
 
Every method of discovery is an abstract machine. But I also locate the diagram as a 
concrete type of visual object. In doing so, I borrow a distinction between sentential 
and diagrammatic representations (Larkin & Simon, 1987). Sentential representations 
model expression as a single sequence of characters, a spoken string, or block of 
written text. Diagrammatic representation, in contrast, indexes information by spatial 
location. Examining these representations as tools for problem solving highlights the 
differences of their forms:  
 

In a diagrammatic representation, the expressions correspond, on a oneto- one basis, 
to the components of a diagram describing the problem. Each expression contains the 
information that is stored at one particular locus in the diagram, including 
information about relations with adjacent loci.  
 

                                                 
9 Deleuze and Guattari (1987) dedicate a section of their essay “On Several Regimes of Signs” in A 
Thousand Plateaus to a discussion of diagrammatic thought and the abstract machine. Deleuze also 
discusses the diagram in his books Foucault (1988) and The Fold (1989). See Knoespel (2001) for an 
accessible general introduction to the Deleuzean theory of diagrams and Massumi (1992) for a meditation 
upon the implications of diagrammatic thinking in the ontology of Deleuze and Guattari (1987). 
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The fundamental difference between our diagrammatic and sentential representations 
is that the diagrammatic representation preserves explicitly the information about the 
topological and geometric relations [italics added] among the components of the 
problem (Larkin & Simon 1987, p. 66).  

 
A problem solving approach assumes that representations are task oriented, and that 
representations are created in order to examine a specific problem. But oriented tasks 
may not drive representation, and diagrams may offer general theoretical models 
rather than specific solutions. This is especially true of social science diagrams, where 
the image presents abstract material as a spatial ordering. Rather than preserve an 
existing spatial topology, such diagrams apply spatial and geometric relations to 
components of a more abstract issue. Diagrams represent the reasoning and thought 
processes of their authors upon the plane of the page, but this mapping need not 
reflect a concrete distribution of objects beyond the page. One method for solving 
problem is to offer a better representation of the problem (Larkin & Simon, 1987; 
Norman, 1993; Hutchins, 1996),10 and diagrammatic thought may take problems with 
no direct spatial relations and represent them as a spatial argument. Interacting with 
the diagrammatic representation will provoke new insight and suggest alternative 
solutions. This method of discovery is the process of thinking through the diagram as 
an abstract machine.  
 
In the following pages, I seek to develop strategies for examining diagrams as 
theoretical tools. In doing so, I first address the definition of the diagram in more 
detail, asking how diagrams are different. What does a diagram seek to display? How 
does this relate to other visual signs? Where do diagrams fit into a typology of 
graphics, and how might this highlight their possible uses and differences? Secondly, 
I conduct an initial archeology of graphic representation, and how it came to be 
understood as a tool for modeling abstract thoughts. Beginning with Vannevar Bush’s 
(1945) idea of associative trails, I ask how trails of argumentation are constructed. 
Following the trail further, I explore more recent attempts to model associations 
(Semantica software), and the use of “trails” as narrative markers in the sequential art 
of comics (McCloud, 1993). In the third section, the trope of the trail leads back to 
academic work practice, with a discussion of trajectory (Strauss, 1993) and the means 
of navigating information ecologies (Hutchins, 1996; Bowker & Star, 1999). Finally, 
I return to visualization strategies and uncover narrative diagrammatic models 
(Greimas, 1987) as a distinct type of representation. These models, I suggest, offer 
theoretical narratives which scholars employ as methods of analysis. Throughout the 
essay, diagrams are offered as both examples and theoretical models. For, among 
their other benefits, diagrams construct a visual language and represent what is 
difficult to express in prose.  

Seeing How Diagrams Are Different  

                                                 
10 Hutchins especially wishes to steer cognitive science away from the model of cognition as problem 
solver. In its place, he offers a model of distributed cognition, in which cognitive activity arises from the 
interaction of individuals with their environment. Environmental interaction relies heavily upon cultural 
models and the available representations for describing that environment. A focus upon representations and 
the ability to translate between them resonates with discussions in the sociology of knowledge as well. 
Meaning and cognition arise through the translation of representational forms into other forms and models, 
both external and internal. For a useful introduction and overview of these issues within a sociology of 
knowledge framework, see Jules-Rosette (2004). 
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In order to demonstrate how diagrams utilize spatial organization as an abstract 
machine, I offer Stuart Hall’s famous image of “Encoding/decoding” (1990, see 
Figure 1). The diagram summarizes the first half of Hall’s (1990) article in a simple 
image, which can then be referred to as Hall later suggests three possible positions of 
the encoding/ decoding relation.11 Hall’s image introduces a structured trajectory with 
five distinct moments of communication.12 The moments of Encoding and Decoding 
are “determinate” moments in comparison to the privileged position of the discursive 
form of the message (labeled in the figure by “Programme as ‘meaningful’ 
discourse”) (Hall, 1990, p. 129). The graphic diagram reflects this priority by 
situating the determinate moments beneath the privileged position. More importantly, 
however, isolating the encoding and decoding moments highlights that their 
respective meaning structures (labeled “meaning structures 1” and “meaning 
structures 2”) do not constitute a direct identity. Rather, the degree of symmetry 
between these distinct moments relates the degree of understanding between sender, 
who occupies the knowledge frameworks in the initial position, and receiver, who 
constructs the knowledge frameworks of the final position. The model graphically 
challenges the study of communication with a new research agenda: compare degrees 
of symmetry and asymmetry between the encoding and decoding positions. In doing 
so, suggests Hall, scholars may better approximate exactly what is being 
communicated by a specific meaningful program.  
 
 

 
 
 
Figure 1. Stuart Hall’s (1990) Encoding/Decoding relation 

                                                 
11 Although I focus upon the image of the diagram in this essay, I do not seek to privilege this 
representational form over written prose or spoken language. Rather, I support a descriptive model in which 
multiple modes of communication are used to approach a single topic. The diagram, in this regard, 
accompanies rather than replaces the text. The specifics of this imagetext relationship deserve further study. 
Although unexamined in the current essay, Roland Barthes’ (1977) reflections on the relation between a 
photograph and its caption provide fruitful ground for beginning such an analysis. 
 
12 Hall offers his five-step model as a direct challenge to the “mathematical model” of a simple sender-
transmission-receiver loop, as proposed by the cybernetics of Claude Shannon (1948) and Norbert Weiner 
(1948). 



Cognitive Science Online, Vol.3.2, 2005                                                                    20 

�

 
By parceling the communicative event into a series of five moments, the diagram 
outlines Hall’s suggestion of relevant topology for the problem at hand. The construct 
translates his theory of communication into a spatial graphic mode, and Hall has 
chosen a graphic representation in order to imbue his argument with a spatial 
typology. This typology can then be preserved as suggestions of the model are 
translated back into the sentential representations of a written text. In the second half 
of his brief article, Hall does just this. Thinking through the diagram, he uncovers a 
series of theoretical positions relating the moments of encoding and decoding. 
Differences of position arise as differences of symmetry across the two moments. 
Thinking through the symmetries, Hall follows the lines of connection, asks what 
each moment implies, and finally compares two of these moments (the moment of 
encoding, and the moment of decoding) to uncover three possible positions. Thus, 
three different contents are created through a similar set of operations. As Deleuze 
and Guattari (1987) suggest, the model provided a diagrammatic abstract machine for 
producing content. The abstract machine of Hall’s diagram, which outlines these 
operations, does not circumscribe a single position of understanding. Rather, it 
provides a machine for outlining how alternate understandings may arise from a 
single message.  
 
Hall’s image offers both an example of diagrammatic representation and a model of 
communication. The priority accorded the message form arises from the encoding of 
an event as a story: the event must become a story before it can become a 
communicative event. Likewise, we can ask what kind of a story the diagram must 
offer before it becomes a useful analytic tool. In claiming that diagrams become 
stories, I position them as graphic images of narrative representation. Narrative 
representations portray unfolding actions and processes of change through the 
presence of a vector (Kress & Van Leeuwen, 1996).13 Vectors lead the viewer to 
perceive the image as a process rather than a timeless description. In diagrammatic 
thought, the following of this vector is the thinking through of forming an expression. 
The vectors of Hall’s model are easy to notice: the arrows indicating movement from 
the left to right. These conspicuous vectors offer a deceivingly straight-forward 
argument: the terms function like nouns and the arrows connecting them function like 
verbs. Relations among the text fragments may then form clauses, such as 
“Frameworks of knowledge are encoded by meaning structures 1 in order to become 
programmes of meaningful discourse.” By reading Hall’s article, however, we find 
that translation is not so simple. Hall presents at least five pages of written discussion 
to explain what his graphic image entails, and none of this discussion is tied to a 
specific instance of communication. Thus, a single arrow may indicate the need for a 
verb of relation, but an abundance of verbs and multiple explanations can replace it; 
“The meaning potential of diagrammatic vectors is broad, abstract, and difficult to put 
into words” (Hall, 1990, p. 59). The strength of the diagram rests with the numerous 
ways its vector connections can be explained. Diagram vectors represent more than a 
single sentential representation, and following the narrative vector of a diagram offers 
an explanation of what these connections represent in specific circumstances. As a 
                                                 
13 Kress and Van Leeuwen (1996) differentiate between two types of images: narrative and conceptual. 
Narrative images present stories in the form of vectors, whereas conceptual images present static qualities 
or classification schemes. The category of narrative image covers a range of representations apart from 
diagrams with defined arrows. Lines of sight, depicted roads, or suggested movement of actors are just as 
likely to provide an image with narrative as the clearly marked arrows of diagrammatic representations. 
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matter-function (Deleuze & Guattari, 1987), the diagrammatic image condenses the 
vector (function) into a specific form of expression (matter). These expressions may 
vary, even as the operations of their expression arise from a single diagram. The 
variability of relations between encoding and decoding, not its structural determinism, 
allows Hall to draw three distinct codes from a single model.  
 
But does a diagram’s lack of linguistic specificity also uncover a weakness of its 
representational form? Does the ambiguity of translating vectors into words allow the 
diagram to promote a set of relations without adequate description? Can diagrams 
provide a crutch for weak arguments? And do the “simplest cases” of diagrammatic 
figures betray the complexity of the written text they claim to represent (Lynch, 
1991)? “Simplest case” diagrams do not perform an independent representational 
function. Like Hall’s image, they simply restate the written language of an article in 
graphic form. Converting written text into a graphic display, the diagram makes an 
argument “look” consistent without furthering the discussion (Lynch, 1991).14 And by 
tricking the viewer with the appearance of logical visual consistency, simple diagrams 
provide the article with a greater weight of authority. Lynch labels this extra weight 
“rhetorical mathematics” because it cloaks the argument within an image of logical 
formality:  
 

Although theory pictures are neither naturalistic nor mathematical representations, 
they evoke an impression on mathematicity. . . . In an important way, these usages 
are metaphorical, not mathematical, because often it is difficult to imagine how 
numerical coefficients ever could be assigned to the structural axes and and causal 
pathways (Lynch, 1991, p. 12-13).  

 
But why should we wish to replace an image with numerical coefficients? We may 
wish instead to replace the simplistic image with a new body of text, a text equally 
consistent with the diagram yet distinct from the original text. Lynch criticizes the 
openness of the simple diagram, but in order to do so, he returns to quantification.15 
But the benefits of diagrammatic images rest in the ambiguity of their vectors, not 
their quantification. Diagrams borrow from both written language and mathematics, 
while breaking the rules of both. The diagram resides halfway between mathematics 
and something yet to be explained (Knoespel, 149). Mathematically, it isolates 
variables, but it fails to precisely define or explain these variables. Thus, the openness 
of the diagram is both its challenge and its gift. The openness challenges the viewer to 
think through the image, to produce thoughts via the abstract machine. But the 

                                                 
 
14 Another line of argument suggests that diagrams function as mnemonic devices rather than sources of 
additional insight. John Law (1986) labels this movement of interessement, a method for interesting or 
enrolling readers in the text. The image also offers a handle for remembrance which readers may hold as 
they leave, and the diagram may serve to mobilize resources in support of an argument (Latour, 1986, 
Lynch, 1995), even as it offers little additional information. 
15 Joseph Gougen’s work with Algebraic Semiotics offers an interesting contrast with rhetorical 
mathematics. Algebraic semiotics presents semiotic transformations and “morphisms” within a formal 
system of algebra, attempting to flatten the diagram, along with all semiotic systems, to the realm of formal 
logic. Gougen outlines a series of equivalences and algebraic axioms, but the application of these rules to 
concrete “semiotic morphisms” remains problematic. His work, therefore, appears to swallow the decoy of 
rhetorical mathematics. But I suggest Gougen’s work is itself diagrammatic, offering a series of problems 
to think through “mathematically,” even as these problems cannot be formally defined in the language of 
mathematics. Once again, the insight arises from the process of translation, not formal transformation. 
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openness also offers numerous results from the process of thinking through. But this 
openness is also a weakness, because the diagram itself cannot validate its arguments. 
That openness must be filled, and each of these results examined separately. To 
assume that “simplistic” images uselessly restate the written contents of a text 
assumes that the written contents are themselves easily graspable. But if the text is 
complex, the image may provide a scaffold for understanding that complexity. As an 
alternate route for understanding a text, diagrams translate the text in spatial terms. 
But translation is always partial, and the diagrammatic representation can never 
replace the specifics of sentential representations.  
 
Criticizing the diagram for failings in the realms of mathematical potential or 
linguistic content judges the diagram in accordance with rules of a foreign system. 
The spatial typology of diagrammatic representation presents a system of rational 
imagery, which differs from both figurative representations and linear sequences of 
musical, verbal, or mathematical notation. In his fascinating 1967 study Sémiologie 
graphique (The Semiology of Graphics), Jacques Bertin outlines eight variables of the 
graphical system: two dimensions of the plane, plus differences in size, value, texture, 
color, orientation, and shape.16 Within these limits, Bertin creates a tripartite 
classification of graphic types: diagrams, networks, and maps. But in relation to the 
current essay, an important distinction needs to be drawn with his definition of 
diagram: “a graphic is a diagram when correspondences on the plane can be 
established among all elements of another component” (Bertin 1983, p. 193). Bertin’s 
diagram involves a graph of axes, and points on the plane relate the variable of one 
axis with another. In such a model, the diagram is mathematically specific: it begins 
by attributing meaning to the two planar dimensions and then plots the 
correspondences. Bertin (1983) limits the diagram to three dimensions, because his 
typology only addresses “classic graphics” involving the fixed image upon a page, but 
his logic of the diagram is not limited in number of dimensions. Computer 
visualizations, which allow users to map data correspondences across numerous 
dimensions or move among a series of multivariable representations also fulfill this 
definition.  
 
A diagram such as Stuart Hall’s (1990), in contrast, does not plot data along a set of 
axes. Rather, it models narrative vectors as a visual argument. Thus, to examine the 
differences between Hall’s theoretical model and the correspondence-based diagram 
of Bertin, we must disentangle what types of information each presents. The plotted 
diagram of Bertin’s typology presents a relational argument drawn from a collected 
data set. It provides a picture of the data, and is guided by the following questions: 
What type of graphic should be used? And what graphic image best relates the visual 
variables to indexed components of the information? The encoding/decoding model, 
on the other hand, operates in the reverse direction: its spatial argument provides a 
guide for isolating the components of information. This process is the practice of 
diagrammatic thought, utilizing the diagram as an abstract machine:  
                                                 
 
16 Bertin’s system offers a chapter detailing each of these variables, explaining their possibilities and 
constraints, and is therefore an incredibly useful guide for graphic design. But the theory also assumes 
problem-solving model of representation, assuming that graphics merely strive to represent a best view of 
the data. A similar set of assumptions drives much of computer-aided information visualization (Card, 
Mackinlay, & Shneiderman 1999; Ware 2000; Wilkonson 1999), as well as guidelines for graphic design 
(Tufte 1990, 1997; Tonfoni 1998; Berryman 1984) 



Cognitive Science Online, Vol.3.2, 2005                                                                    23 

�

 
A diagram has a function analogous to constructing a plot for a narrative argument 
[italics added]. Once a diagram has completed its prephilosophical task of mapping 
a conceptual space, the diagrammatic nodes must be animated with figures who 
speak in coherent and consistent dialogue (Knoespel 2001, p. 150,).  

 
A diagrammatic model provides the narrative plot, and the work of theorizing adds 
the figures who speak in “coherent and consistent” dialogue. These figures are 
translated into the frame of the diagram, such that the model may “speak for itself.” 
Hall’s three positions offer separate views of the encoding/decoding relation, yet all 
three result from a single diagrammatic image. The image does not graph these 
positions; it offers a set of operations for discovering the multiple voices.  
 
The two models differ in their level of abstraction.17 Bertin’s diagrams operate at a 
level of empirical and evidential representation, where a change in the image displays 
a change in evidence. But like Lynch (1991), I wish to move away from discussions 
of images presented as evidence and toward the examination of visual aides in 
theoretical arguments. “Theory pictures” operate at higher levels of abstraction, where 
a change in the diagram indicates a change in the type of evidence to be collected. 
Altering terms in diagrammatic representation alters the abstract machine, and 
altering a machine will produce a new type of object. Hall’s analysis of 
communication would produce a new set of relations had he isolated six moments 
rather than five. Thus, Hall’s model of encoding and decoding is itself a code, a code 
for parceling an event of communication into a sequence of five moments. As a mode 
of representation distinct from sentential language, diagrams parcel experience in new 
and different ways, and challenge us to consider connections of thought, which are 
difficult to model through written language alone. Diagrams offer the possibility of 
theoretical representations beyond the realm of spoken and written language: 
representations built upon a spatial typology rather than the rules of linguistic 
grammar.18 But why consider the modeling of thought as a spatial typology? What 
metaphors allow us to imagine thought as a spatial layout beyond the realms of 
sentential representations cannot?  

Visions of Information Architecture 

 Vannevar Bush’s essay “As We May Think” was published twice during 1945 and 
immediately hailed as a groundbreaking vision of the future comparable to Ralph 
Waldo Emerson’s address “The American Scholar” (1837). The essay first appeared 
in the July issue of The Atlantic Monthly, and a shortened, illustrated version followed 
in the September edition of Life. During World War II, Bush rose to prominence as a 
highranking military engineer and chief organizer of the Manhattan Project, and his 
bold essay formulates a new direction for science and engineering as research shifts 
                                                 
17 The concept of levels of abstraction is borrowed from Gregory Bateson (1972) and the stimulating 
insights of Steps to an Ecology of Mind. I use the concept generally and do not relate presented models to 
specific levels of Bateson’s discussion. As a preliminary suggestion, Bertin’s (1983) diagram may be said 
to offer models of proto-learning, whereas the theoretical models (such as Hall’s (1990) image and those 
throughouth this paper) operate at the level of deuetro-learning, or learning to learn (Bateson, 1972). 
18 The diagram’s ability to break with linguistic grammar through the creation of a new spatial grammar 
may offer a clue to the diagram’s appeal in structuralist circles. In structuralism’s attempt to condense all 
thought to language, diagrams offer the ability to comment on language from beyond its borders.  
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away from the victorious war effort. But the July and September publication dates, 
which announced a new research agenda in times of peace, ironically bracketed the 
extreme violence of the war’s end, a violence Bush himself was instrumental in 
achieving: the atomic bombings of Hiroshima and Nagasaki during August of the 
same year.  

“As We May Think” predicts a series of inventions, which Bush believes will 
revolutionize the practices of knowledge and memory, including miniature personal 
cameras, the growth of microfilm storage, a “vocoder” speech to type translator, and a 
powerful calculator dubbed the “thinking machine” by the editors of Life. The 
article’s centerpiece, and source of its lasting influence, however, is a device labeled 
“Memex.” The memex is a mechanical aid to extend memory through personalized 
filing and rapid information selection.19 Although the record of collected information 
continues to grow, consultation of this record and its subsequent translation into 
useful knowledge remains mired in outdated methods: “Selection [of texts] is a stone 
adze in the hands of a cabinetmaker” (Bush, 1945, p. 99). Sixty years later, with an 
increasing cascade of information, Bush’s concerns and suggestions remain starkly 
contemporary:  

This is the essential feature of the memex. The process of tying two items together is 
the important thing. . . .  

Thereafter, at any time, when one of these items is in view, the other can be instantly 
recalled merely by tapping a button below the corresponding code space. Moreover, 
when numerous items have been thus joined together to form a trail, they can be 
reviewed in turn, rapidly or slowly, by deflecting a lever like that used for turning 
the pages of a book. It is exactly as though the physical items had been gathered 
together from widely separated sources and bound together to form a new book. It is 
more than this, for any item can be joined into numerous trails (Bush, 1945, p. 103-
104).  

The solution to poor indexing and information selection rested upon the creation of 
associative trails, which, when stored in a Memex, could efficiently and easily 
retrieve information at a later date. Today, Bush’s (1945) charge for a “selection by 
association, rather than by indexing” (p. 102) remains unanswered. Web-based 
hypertext links numerous documents, but user-defined trails of association cannot 
blaze across unconnected texts. Rather, they can only follow those links already 
embedded in the text.20  

What interests me about Bush’s (1945) suggestion of associative trails, however, is 
not the intricacies of hypertextual navigation, but their proclaimed “analogy” with a 
theory of cognition. The memex, and Bush’s reflections on its possibilities, were 

                                                 
19 Bush’s vision of the memex changed over time in response to new technology and theories of cognition. 
The discussion in this paper, however, focuses upon the original idea presented in 1945. From Memex to 
Hypertexr: Vannevar Bush and the Mind’s Machine (1991), edited by James M. Nyce and Paul Kahn 
collects Bush’s writings regarding the memex, along with commentary, reflections, and supporting 
documents. 
20 Randall Trigg (1991) offers a thoughtful, although now somewhat dated, comparison between Bush’s 
trailblazing and hypertext construction. Ted Nelson, who coined the word hypertext in his influential 
Computer Lib/Dream Machines also argues that hypertext has failed to live up to its potential for modeling 
narrative. 
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firmly rooted in an environment of utopian thinking imagined through the lens of 
analog technology (Nyce & Kahn 1991; Owens, 1991). The potential memex 
manifests itself as a direct modeling of the brain, and the promise this holds for 
personalizing the storage and retrieval of information:  

When items are thus tied together in a chain, when an item in the chain can be 
caused to be followed by the next, instantly and automatically, wherever it may be, 
there is formed an associative trail through the material. It is closely analagous [sic] 
to the trails formed in the brain, and it may be similarly employed (Nyce and Kahn, 
1991, p. 58).  

The trails of the memex diagram a process of thought. And by following these trails, 
one can recreate earlier associative trails. Physically, the memex provides a personal 
memory prosthesis containing all the books, facts, letters, records, and 
communications with which an individual came in contact (Bush 1945): a library 
demarcated with personal trails of association. But the function of memex is an 
abstract machine: a set of operations for rebuilding the thoughts diagrammed by its 
trails. The memex allows individuals to perfectly recreate expressions of thought, just 
as patent diagrams provide a means for recreating physical machines. Moreover, by 
recording personal trails, the memex makes those trails visible, and, once visible, 
trails may be followed by others. Bush (1945) foresaw a profession of trailblazers 
who delighted in finding new and useful trails through the enormous mass of the 
common record. The vision of memex is much more than a call for diagrams; it is a 
call to institutionalize, share, and mechanize diagrammatic thought. In the form of the 
memex, diagrammatic trails of interpretation guide information selection, overcoming 
the “stone adze” of standardized indexing.21  

Although the memex champions the lofty ideals of diagrammatic thought and abstract 
machines, Bush’s interest in trailblazing may have much humbler origins. For his 
Master’s Thesis from Tufts College, Bush invented the Profile Tracer, a machine for 
measuring the distance traveled by surveyors over uneven ground (Owens, 1991). 
During these years of study, the intellectual atmosphere of Tufts engineering school 
was dominated by Gardner Anthony, who advocated the graphic language as “an 
exercise in writing straight and thinking straight” (Owens, 1991, p. 26). Anthony’s 
short book (with lengthy title) An Introduction to the Graphic Language: the 
Vocabulary, Grammatical Construction, Idiomatic Use, and Historical Development 
with Special Reference to the Reading of Drawings (1922) proclaims the uniqueness 
of technical graphic drawing as a system of orthography, vocabulary, and grammar.22 
Understanding graphic language allows the engineer to “express ideas in the most 
concise manner with absolute accuracy of detail, using the greatest care to avoid 
ambiguity” (Anthony, 1922, p. 81). Building upon architectural and technical patent 
drawing, Anthony champions the diagram for its specificity. Here, the diagram’s 

                                                 
21 The memex records more than links between information. It also records the interpretative act of 
associating two distinct texts. Associative trails interpret information rather than index information, and the 
abstract machine operates as interpretation (Massumi 1992, 17). 

 
22 Surprisingly, Anthony’s text is rarely mentioned by later writers, such as Bertin (1983) and Wilkonson 
(1999), who pursue the similar aim of outlining a grammar of graphic language. 
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ability to escape language makes it powerful, contrasting sharply with the unspecific 
weakness of Lynch’s  (1991) simplest case. Whereas Lynch’s criticism begins from a 
diagram’s poverty of theoretical complexity, Anthony’s praise arises from their 
usefulness in the building of structures and objects. But what prevents bridging this 
strength of manufacturing into the realm of the abstract? The abstract machine 
suggests just this: that theories and interpretations, like physical machines, can be 
reproduced diagrammatically. The only difficulty rests with how. When Bush (1945) 
ends his visionary essay by asking if the connection between the human senses and 
knowledge absorption may be established more directly, he echoes the Gardner 
Anthony’s Graphic Language. With the suggestion of associative trails, he also offers 
a partial answer of how that may be accomplished.  

Similar suggestions for modeling the trails of association continue in academic 
discussion, and San Diego based company Semantica Research, Inc. has recently 
reinvigorated the prospect of visually displaying association. Without directly citing 
Bush, Semantica’s byline “I see what your thinking” renews his call to make thought 
process directly accessible through the senses and reiterates the virtues of Gardner’ 
Anthony’s graphic language. Semantica’s product line provides software for the 
creation, viewing, and sharing of semantic networks. Networks consist of three 
hierarchical levels: 1. Concepts, 2. the Relations connecting concepts, and 3. 
Instances, which encompass at least two related concepts (Analyst, 5; Network, 3; see 
Figure 2).23 Concepts are entered into a network and associative trails connect them 
with other concepts. Naming these associations transforms them into relation, and 
links two concepts as a single Instance. Like memex, Semantica’s model relies upon a 
proclaimed analogy with the practices of memory:  

Our Semantica products quickly and easily capture what experts know, organize it, 
and visually represent it the way that humans store information in long-term 
memory [italics added]. Unlike traditional databases, which try to fit knowledge into 
rigid structures of tables and rows . . . , [Semantica] allows the expert to model their 
internal mental structure and expose it to others within and outside of the 
organization (http://www.semanticresearch.com). 

Semantica visually represents the collective mental structures of an organization. The 
rhetoric of Semantica’s papers and press releases emphasize this visuality, hoping to 
reintroduce experimental visualizations to the center of intellectual discourse. Like 
Anthony’s graphic language, Semantica champions the detail and specificity of visual 
representation. But like Lynch’s theoretical pictures, the company examines visual 
artifacts at the levels of “metacognition,” and theoretical sophistication: “[Semantica] 
reflects our thoughts back to us as concretized, visible things instead of momentary, 
fleeting entities” (Semantica in Education, 2003, p. 11).24 Although Semantica offers 

                                                 
23  Semantica’s three levels fulfill a similar function as Charles Pierce’s concepts of firstness, secondness, 
and thirdness. Although Semantica white papers present the product in terms of education and semantic 
network theory, they do not draw upon the field of semiotics. 
24 Can semantic networks function as abstract machines? Geneviéve Teil and Bruno Latour (1995) ask a 
related question in their essay “the hume machine: can association networks do more than formal rules?,” 
which explores the possibilities of association networks to model computerized data analysis. Like Bush, 
the authors emphasize the personalization of networks: “the possibility for the actors themselves to define 
their own reference frames as well as the metalanguages used within them” (1). Teil and Latour share many 
of the conclusions of this essay, including their final suggestion that association networks are “moving 
closer and closer to techniques of narrative” (ibid., 9). 
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a personal environment for the construction of associative trails, it does not allow 
users to solidify a geometry above the level of relation. Instances simply connect two 
concepts, they cannot build shapes or patterns.  

 

 

Figure 2. The three levels of a Semantica Knowledge structure: 1) Concept, 2) 
Relation and 3)Instance.  

But the spatial topologies of what I have been calling theoretical diagrams exist as a 
completed image, not just a collection of relations. The connections of diagrams are 
positional, not symmetrical (Jameson, 1987, p. xv), and understanding the placement 
of terms plays an important role in grasping the operations of an abstract machine. 
The pieces of a patented machine do not connect haphazardly; they adhere to an order 
and placement demanded by the accompanying diagram. Likewise, diagrammatic 
theories build narrative arguments through spatial relations of conscious and critical 
placement. As a spatial argument, the positioning of terms trumps their specific 
definitions. In response to this provision, I returned to the metaphor of the trail and 
found, in the writings of Scott McCloud as definition of “trails” as spatial narratives.  

Building upon Will Eisner’s definition of comics as “sequential art”, McCloud (1993) 
examines the possibilities of comics as a distinctive art form. In doing so, he dedicates 
significant amounts of discussion to the representation of time (See Chapters 3 and 4). 
McCloud (1993) highlights that, although individual comic frames are static, action 
occurs as the reader moves from one image to the next. The action does not occur 
within the marked frames, but in the unmarked “gutter” separating frames. From the 
emptiness of the gutter, the reader creates closure and imagines the movement from 
one comic frame to the next. Or, to utilize the language of Semantica, the gutter 
allows the reader to connect two comic terms and relate them as a single instance. All 
readers of a single comic follow the shared narrative of the frames, but the specific 
details of narrative action rest upon the individual reader (see Figure 3). By 
demonstrating how comic narratives share a story with guided actions but ambiguous 
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details, the analogy of the gutter offers a clue to solving the puzzle of diagrammatic 
representations. Terms of a diagram, like comic frames, choose the essential elements 
of a story. But the axe of a diagrammatic argument strikes in the gutter, when an 
individual reader elaborates the details as a specific expression.  

In a subsequent book, McCloud (2000) redefines the sequential art of comics as “an 
artist’s map of time itself” (p. 206). Comics translate temporal relations into a spatial 
layout, and reading this layout provides the vector for their narrative. But the 
direction of graphic narrative vectors need not follow the right to left, top to bottom 
arrangement of classic comics on a printed page. Rather, the narrative path from 
comic frame to comic frame can adopt an infinity of forms.25 But how will readers 
know which path to follow from frame to frame? McCloud (2001) suggests 
connecting frames with a simple line and in an online series, he labels these lines 
“trails”.  Although McCloud mentions Vannevar Bush as a predecessor to the digital 
publishing revolution, he does not specifically cite Bush’s use of the term “trail.” 
However, McCloud’s vision of the comic artist carving narrative trails across an 
infinite canvas reflects the “professional trailblazer” of Bush. The comic artist creates 
a map of time in space, and outlines the temporal trail across that space. Trails 
connect frames depending upon the associations of the artist. But the specific details 
and interpretation of those associations are left to the reader. The result is a visual 
artifact, both entertaining and operational. Comic artists share their stories, but only 
as readers think through the connections. McCloud revels in the possibility of comic 
art as a dialogue between artist and reader. And describing these possibilities, he 
unwittingly recalls Bush’s work with the Manhattan project: “Comics is a powerful 
idea . . . like an atom waiting to be split” (McCloud, 2000, p. 238-241).  

 

Figure 3. McCloud’s “graphic” example of blood in the gutter. McCloud provides 
this example to demonstrate how the reader of comics produces closure by imagining 

the details which connect two frames. 

                                                 
25 See McCloud’s discussion in chapter ? of Reiniventing Comics. A number of comic examples with non 
traditional trail structure are also available on his website (http://scottmccloud.com) 
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Watching Academic Work  

The effects of splitting McCloud’s atom were indeed powerful, and propelled his 
work beyond the realm of comics. His name is now cited in relation to graphic design, 
film studies, and reflexive use of alternative text formats. I too continue the 
discussion. What might the concept of trails, as outlined by both Bush and McCloud, 
contribute to an analysis of diagrammatic representation? I suggest academic practice 
can be likened to the professional trailblazing of Bush. Like McCloud’s comic artists 
of the future, academics carve narrative trails across an infinite canvas. In the realms 
of information retrieval a “search” requires following a trail. Likewise, ethnographic 
and ethnomethodological researchers often “trail” participants in order to understand 
local practices. Both search and research trails, however, operate within a larger 
project: the collection and analysis of information, which is then written and 
presented either in conference proceedings or journal articles. Do the narratives of 
these journals form trails of their own? And how might the narrative representations 
of diagrams relate to these wider narratives? Can diagrams represent these narratives 
as maps of intellectual space, just as comics offer spatial maps of narrative time? And 
if so, should academics be writing diagrammatic comic books?  

The trails of academic argumentation rely on more than just association. They require 
the analysis and clarification of these associations such that another scholar may 
discern their information and argument structure. The subtlety of descriptive social 
theory is one of its greatest strengths. Trails of academic research are rarely obvious, 
and walking them entails a careful following, a careful reading. Careful explanation 
of theoretical connections combines the associative trails of Bush with the narrative 
trails of McCloud. Associations become lucid, shared, and discussed once they are 
situated within a narrative.26 Academic research parallels the trailblazing of Vannevar 
Bush (1945) by linking distinct sources of specialized information in order to further 
a larger claim. But academics go one step further: they analyze and explain the wider 
significance of their trail. Information is richest when it offers multiple meanings and 
a wealth of possible interpretations.27 These meanings gather in webs of information 
ecology, which, like biological ecologies, are densely interwoven, messy, redundant, 
and complex (Bowker & Star, 1999). As a result, the utility of associative trails across 
an information landscape is not self-evident. Interpretation reduces ecological 
richness, grounding analysis in specific contexts or local practices.  

In order to examine these local work processes, Anselm Strauss (1993) employs the 
term trajectory. A trajectory involves both the emergence and persistence of 
phenomena, as well as the multiple actions contributing to the phenomena. The 
important dual meaning asks both what trail does an object of analysis follow and 
how is that trail shaped by interactions with other objects and actors. Trajectories 
result from interaction, and this interaction puts the trailblazer back on the trail. 

                                                 
26 The importance of narrative for theoretical exposition and argumentation is also a major theme of 
Francois Lyotard’s The Postmodern Condition (1979) 

 
27 In an insightful section dealing with the semiotic theory of codes, Umberto Eco (1976) bridges both 
Stuart Hall’s (1990) encoding/decoding model and the multiplicity of information: “Information is a value 
depending on the richness of choices. . . . This richness of the message is only reduced by the addressee 
when he [sic] selects a definitive interpretation” (p. 141). 
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Trails, both the associative trails of memory and the dusty trails of the countryside, 
alter as they are traversed. As action continues, trajectories merge, diverge, interlace, 
and change direction. In academic circles, the interpretation, conceptualization, and 
projection of phenomena redirects the unfolding trajectory of an analyzed object. 
Analysts gather strings of information from the information ecology, and knot these 
strings along lines of association and interpretation. Knots make associations explicit, 
the work of tying applies the critical judgment of an expert, and academic writing 
publishes the knots as a finished essay, a series of sentential representations.  

As an alternative strategy, diagrammatic representations explicitly highlight aspects 
of analysis (through a clear display of terms and relations) while leaving other aspects 
ambiguous (the specificity of these connections). A diagram offers a narrative trail 
waiting to be completed. Like a comic book, moments of shared narrative are clearly 
marked, but most of the argument occurs in the “gutter.” Approaching a diagrammatic 
model, the reader must provide closure, relating cross-term connections as a single 
instance. The researcher may imagine these connections with as little or as much 
detail as they wish, but like the readers of McCloud’s comic, it is they who drop the 
axe. How one drops the axe betrays a theoretical commitment, and communities of 
researchers develop around these shared sets of commitments. Communities of 
practice wield similar axes, and swing them in similar arcs. Consequently, they share 
more detailed narratives and chop similar trails across the information landscape. 
Research trajectories blaze trails across the information ecology. These trails are then 
shared, so that others with similar axes may run along them, rather than chop a new 
path.  

But merely suggesting research and publishing as trailblazing and the sharing of trails 
does not answer the charge of how trailblazing benefits from the use of diagrams. 
Having moved from trails to trajectory, I was not surprised, therefore, when the next 
piece of the puzzle accompanied a discussion of navigation. Throughout Cognition in 
the Wild (2001), Edwin Hutchins utilizes diagrams as situating devices in order to 
share the cognitive strategies of navigators. Thinking through Hutchins’ diagrams 
places the reader in relation to the navigational markers being described. 
Diagrammatic thought, like navigation, is a method for getting from point A to point 
B, from one location of understanding to another. In the process, diagrams play a 
“piloting role” (Deleuze and Guattari, 1987, p. 142): they suggest a new way of 
seeing from a new perspective and present a new visible landscape of the information 
ecology. Likewise, Hutchins’ diagrams pilot the reader to an understanding of 
Micronesian navigation. Micronesian navigators do not direct a moving canoe among 
stationary islands. Rather, they maintain a stationary canoe as the islands move by on 
either side. For those of us familiar with geographic maps, the Micronesian model is 
difficult to grasp. We are too firmly positioned in a community of practice which 
imagines the geographic landscape as a stationary set of markers. But the model of 
mapping stationary locations is equally difficult from the perspective of the 
Micronesian navigator (Hutchins, 1979). In a useful explanation of this confusion, 
Hutchins offers a thought experiment:  

Go at dawn to a high place and point directly at the center of the rising sun. That 
defines a line in space. Return to the same place at noon and point again to the 
center of the sun. That defines another line in space. I assert that the sun is located 
where the two lines cross. Does that seem wrong? Do you feel that the two lines 
meet where you stand and nowhere else? (Hutchins, 1979, p.  81) 
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Figure 4. Hutchins’ diagrammatic example of how two lines, which appear to cross at 
an individual standing on earth, can be shown to meet at the sun. Thinking through 
the diagram situates the viewer beyond the solar system.  

 
Intuitively, the two lines appear to cross at the point where the individual stands, but a 
diagram displays how they may meet at the sun (See Figure 4). The diagram is drawn 
from a perspective beyond the solar system. Thinking through the diagram places the 
viewer beyond the solar system as well. The diagram is both a situating device and a 
coding scheme, allowing the viewer to see the world from the perspective it 
establishes (Goodwin, 1994). Geographic maps, like the solar system diagram, place 
the viewer above the landscape. Micronesian navigation, in contrast, systematically 
organizes its representations around the position of the canoe. The two 
representational systems lend themselves to distinct sets of inferences, and 
calculations (Hutchins, 2000), but both provide useful navigational models. The 
diagrams of each model provide a means for locating markers within a landscape, and 
therefore play a piloting role. Navigation, like cognition, occurs as a system of 
interaction between individuals, the environment, and the markers highlighted within 
that environment.28 
 
The strength of Hutchins’s thought experiment arises through the reader’s notice of 
shifting reference frames. In the experiment, the reader begins, like a Micronesian 
navigator, from the frame of their body as it observes the sun. The diagram, however, 
draws them out of this frame and positions them beyond the solar system. Thinking 
through the diagram moves the reader from one position to the next: from the frame 
of the body to an external viewpoint. But most of Hutchins’ navigation diagrams 
operate in the reverse direction. In order to situate readers on Micronesian canoes, he 
translates diagrams of geographical positioning into images of horizon lines and 
positional etak islands. Via these diagrams, the reader is removed from his/her 
position above the ocean and placed within the Micronesian canoe. Shifting diagrams 
move the horizon around the individual, just as the stars move about a canoe. 
Diagrams move readers from one island of thought to another, and the abstract 
machine formalizes a new interpretation by reconstructing the perspective of the 
canoe.  

                                                 
28 Hutchins works these discussions into his argument within the larger category of distributed cognition. 
Distributed cognition offers an alternative model of cognition from the “official history of cognitive 
science,” (356-259) in which cognition occurs as much outside the head as within it. Rather, cognition 
occurs as a system, in which individuals interact with the built environment and the tools within it. 
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In a later paper, Hutchins discusses this practice of thinking-through diagrams as the 
use of material anchors for conceptual blending. The theory of conceptual blending 
(Fauconier & Turner, 2002) outlines a cognitive trajectory in which two mental 
spaces become blended to create a new mental space (See Figure 5). The blending 
trajectory is represented by a narrative diagram consisting of four spaces: 1) a generic 
space, which holds the structure that the input spaces share; 2) two input spaces; and 
3) the blend. Selective elements of the input spaces project into the blend, where they 
give rise to new emergent structure. In the diagram, the square in the blend space 
represents emergent structure. Elaborating this structure—a process known as 
“running the blend” (Fauconnier & Turner, 2002)—gives rise to new elements, which 
are indicated by the small white circles of the blend space. By running the blend, 
individuals discover new properties, relations, and elements. Stable input models 
facilitate the process, and one method for achieving stability is the creation of 
physical models or “material anchors” (Hutchins, 2000). Material anchors represent 
an input space ready at hand, which may then be blended with another mental space. 
The analog clock, which presents a cyclical model of time divided into two series of 
twelve-hour segments, provides a good example. Familiarity with reading clocks 
results from apprenticeship in a community of practice, and, once gained, an 
individual can blend the structure of the clock face with knowledge of day and night 
in order to specify the time (Hutchins, 2000). Material anchors provide ready-made 
mental models, which, when blended with specific circumstances, allow individuals 
to navigate their surroundings and produce local meaning.  
 
 

 
 

Figure 5. The basic blending diagram. The images consist of 1) a generic space, 2) 
two input spaces; and 3) the blended space. The square in the blended space 
represents emergent structure, and the small white circles are new discoveries. 
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The spatial typologies of diagrammatic representations fulfill a similar role in the 
analysis of data. Diagrams provide a ready-made structure with which to interpret and 
reduce the richness of information. Just as Fauconnier and Turner (2002) utilize a 
diagram to explain conceptual blending, conceptual blending can also be employed to 
explain the usefulness of diagrammatic representations. The diagram provides an 
image of mental structure, and sharing this representation attempts to create a 
common understanding. Blending this spatial typology with collected data provides 
an opportunity for running the blend, and uncovering new discoveries. Thinking 
through diagrams produces new discoveries, and formalize a specific expression of 
the abstract machine. Externalizing operations of discovery as diagrammatic 
representations provide images of shared mental structure such that others can “see 
what [the expert] is thinking” (Semantica). Interactively thinking through these 
representations situates individuals and introduces the shared psychology of a 
community of practice. As navigational tools for reasoning, diagrams operate as a 
form of “professional vision”:  
 

Inscription practices are accomplished through appropriate use of artifacts [such as 
diagrams]. Supporting such tool use are sets of perceptual structures, the ability to 
see what and where to measure. Moreover, we are able to glimpse how these 
structures are passed from one generation to the next through apprenticeship 
(Goodwin, 1994, p.  615).  

 
The narrative outlines of diagrammatic representation contribute material anchors for 
navigating new trails and running new blends. Diagrams clearly label the categories, 
and terms relevant to a specific community (Goodwin, 1994), condensing the richness 
of the information landscape into bounded frames. The trails of narrative may then be 
traced from frame to frame, with the resulting stories shared across a community  
 
Diagrammatic representations construct spatial typologies in an attempt to share 
mental structure and arrive at a collective psychology. By displaying the associative 
trails of “experts,” they stabilize “professional vision” for communities of practice. If 
the perspective of professional vision is difficult to grasp, a diagram situates the 
novice by reorganizing the information landscape. Through the lens of the diagram, 
islands of thought swim by the viewer, and the abstract machine reproduces a shared 
perspective. Diagrammatic markers offer signposts for navigating shared narratives, 
but the closure of filling the gutter with detail provides individuals with a unique trail 
of personal associations. The critical analysis and descriptive sharing of this personal 
trail is the work of theorizing. A collective structure, the shared functions of the 
diagram, help plan the journey, but the detail lies in the traveling. 29  
 
Looking at Visualizations 
 
Returning to the cascade of visualization artifacts, how well do they answer this call 
for representations of shared psychology? Do information visualizations provide 

                                                 
29 Hutchins (2001) wishes to steer cognitive science away from the model of cognition as problem solver. 
In its place, he offers a model of distributed cognition, in which cognitive activity arises from the 
interaction of individuals with their environment. Environmental interaction relies heavily upon cultural 
models and the available representations for describing that environment. The distributed cognition 
resonates with discussions in the sociology of knowledge. In both fields, meaning is understood not as a 
solution to tasks but as a translation from one setting to another (See Jules-Rosette, 2004). 
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adequate tools for navigating the trails of an information landscape? Do they produce 
new realities, new insights, and new interpretations? Diagrams present markers for 
navigating an ecology of information, and theorists navigate the blend of 
diagrammatic space and specific data. The theorist, following the comic-style 
narrative of a diagram, colors the gutter with precision and description. The diagram 
outlines a trajectory, and introduces the landscape. It provides a narrative structure for 
traversing the landscape along a vectored trail. But the individual researcher must still 
walk the trail, and the discoveries of that trail arise from critical, careful, and 
conscientious marking of space they discover.  
 
This contrasts sharply with the current flood of information visualizations, which 
more closely resemble the diagrams of Jacques Bertin (1983). Computer-aided 
visualization strategies map the correspondences of massive data tables, in order to 
produce new views of data. Researchers then interpret and analyze these views to 
explain patterns, discrepancies, or interesting points of convergence. Such 
visualizations provide the matter upon which interpretation functions, rather than a 
Matter-Function (Deleuze & Guattari, 1987): a diagrammatic model for guiding 
interpretation. Building upon Bertin’s aphorism that “graphics is the visual means of 
solving logical problems,” Card,  Mackinlay, and Schneiderman (1999) define 
Information Visualization as “the use of computer-supported, interactive, visual 
representations of data to amplify cognition” (6). The goal of visualization, they 
continue, is insight, not pictures. But, unlike both Bush’s (1945) trails of associated 
information and theory pictures of diagrammatic thought, “scientific visualizations 
tend to be based on physical data” (Card,  Mackinlay & Schneiderman, 1999). 
Visually transforming a data set may highlight patterns of interest, but the image only 
highlights; it does not offer an explanatory narrative. Reading a computer-generated 
visualization image rests within the narrative of a predefined task. It is an event of the 
story, not the arch of the story. Not surprisingly, therefore, the authors provide a 
diagram displaying the narrative process of using visualizations in the service of a 
task (See Figure 6). First, Data Transformations map Raw Data into Data Tables; 
next, Visual Mappings transform data tables into Visual Structures; and, finally, View 
Transformations complete the process by creating new Views (Card,  Mackinlay & 
Schneiderman, 1999). Every step of the process benefits from information 
visualization, but the trajectory of work remains the same. The diagrammatic figure 
displays the dominant narrative of an abstract machine, in which each stage of 
visualization is merely a cog.  
 
Thus, the narrative representation, in which visualization contributes to a task, 
provides a better example of diagrammatic thought than the visualization strategies 
themselves. The diagram is not in service of an external task; the diagram explains the 
task. Or, more precisely, the diagram is the task. The diagrammatic function shapes 
matter into a form of expression, and “the diagrammatic or abstract machine does not 
function to represent even something real, but rather constructs a real that is yet to 
come, a new type of reality” (Deleuze and Guattari, 1987). Diagrams offer new 
interpretations of reality, the movement from one island of thought to another. Theory 
diagrams function like the navigational images of Hutchins: they situate the viewer in 
the canoe. In Micronesian navigation, the canoe remains stationary as a new location 
arrives for the navigators. Similarly, the diagram remains stable, as a new 
information-scape arrives for the theorist who is riding it. Diagrammatic thought does 
not task itself with moving to an already known and geographically mapped location. 
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Rather, the image explains how a new location, a new reality, and a new 
interpretation may gather around the diagrammatic theory. The new locations of 
diagrams result from coding schemes, which teach the viewer how to see. These 
ready-made models parcel events via a spatial topology which escapes sentential 
representation; they produce notational systems for representing new methods of 
seeing (Norman 1993). Like visualizations, they offer stable artifacts. But they are 
also instructions for producing new cognitive artifacts; they are abstract machines for 
the reproduction of an expressive form. As abstract meta-representations, diagrams 
represent methods of representation (Norman 1993).  
 

 
 
 
Figure 6. “The Uses of Computer Visualization.” Presented by Card, Mackinlay and 
Schneiderman, (1999), the diagram portrays how data transformations, visual 
mappings, and view transformations of computer information visualization are 
situated within the narrative of a task oriented work trajectory. 

 
 
The diagrammatic symbol of the semiotic square, from which the opening quote was 
adapted, exemplifies this logic (See Figure 7).30 Greimassian semiotics specifically 
aspires to create meta-representations for translating between levels of language: “the 
investigation of meaning is by definition a metalinguistic activity that paraphrases and 
translates words and utterances by other words and utterances” (Peron, 1987). The 
semiotic square is one such attempt. As an analytic framework, it translates the 
language of narrative into a spatial construct, and numerous theorists, including 
Bennetta Jules-Rosette (2004), James Clifford (1988), Frederic Jameson (1987), and 
Katherine Hayles (1999), have utilized the square. Through a shared set of operations, 
these theorists have expressed a variety of contents. Since all these utterances share a 
common form, they function as “immutable mobiles” (Latour, 1986), and may be 
shared, compared, studied, and exchanged.31 The semiotic square creates a notational 

                                                 
30 Figure 7 presents a diagram of the simple semiotic square. The full set of relations and terms which the 
square makes possible are outlined in Appendix A. 

 
31 See Latour (1986, 2221), Lynch (1985), and Norman (1993) for discussions of comparison across 
representations, and the mobilization of immutable mobiles for furthering academic claims. 
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system with which to compare numerous domains through a shared spatial topology. 
More importantly, however, this shared topology outlines a trajectory for producing 
yet more descriptive forms. The terms of the semiotic square are connected by 
narrative vectors. These vectors must be animated to speak, and they have spoken 
with many voices. Expounding upon these connections—filling their “gutters” and 
giving them voice—retranslate the model into prose and produce additional insight.  
 
Thus, the semiotic square operates as narrative representation on multiple levels. On a 
primary level, it isolates the structure of narrative. On a higher level, it returns this 
structure as a process for constructing other narratives. But how does the system 
work? What operations does the square suggest? What trail does it blaze? First, the 
square requests the isolation of two oppositional terms, or semes. These semes 
become the characters, whose subsequent actions will complete the story. Each 
character-term generates another character, its simple negative. Beginning with the 
opposition of student and teacher, for example, we generate the terms of non-student 
and non-teacher. Notice that these negatives are not synonyms of the original terms. 
The qualities of a non-student differ greatly from the qualities of a teacher. As the 
story continues, relations develop between characters, and the square unfolds into its 
full structure:  
 

The entire mechanism is capable of generating at least ten conceivable positions out 
of a rudimentary binary opposition (which may have originally been no more than a 
single term) . . . The square [offers] a kind of “discovery principle” [italics added]    
. . .  One can, in other words, very properly use this visual device to map out and to 
articulate a set of relationships that is much more confusing, and much less 
economical, to convey in expository prose (Jameson, 1987, p. xiv-xv)  

 
The pedagogical function of the square translates a complexity of relations into a 
single image, and produces a narrative argument from a simple opposition of terms. 
Limited to prose, scholars may overlook these structures due to their difficult 
expression. But translating the same material via the square offers a new form of 
expression, and this new form may simplify aspects that were previously difficult. 
The square outlines a model for thinking through the very connections it represents. 
And it diagrammatically produces a new landscape around any navigator who holds a 
steady course between two opposing terms.  
 
Navigating the semiotic square, theorists recreate the form of expression, but the 
contents of expression vary greatly. Greimas’ (1987) own example begins with the 
binary of permissible and unacceptable sexual relations. He then offers nine dense 
pages of description, outlining the meaning of each position and each relation. But 
these outlines in prose are themselves incredibly technical and abstract. Applying 
them to specific sexual encounters or martial relations would require yet more 
extensive translation work. The terms of the square present essential elements of the 
narrative, but the “gutter” separating these terms can be continuously filled with ever-
increasing detail.32 The structure of the semiotic square orders spatial typology, but its 

                                                 
32 A counter example can be found in the book Mapping the Dynamics of Science and Technology edited 
by Ari Rip. The book contains a diagram surprisingly similar to the semiotic square, however, the diagram 
itself is not analyzed as a semiotic square. The square is given as an example of an article as a network of 
connections. This presentation is given as an example of a network, which can be drawn from an article. 
But the other than that, the figure is given a mere three sentences of attention in the written text. The figure, 
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“discovery principle” flourishes through interaction with that structure. And its 
insight arises from the clearing of details from that structure’s gutter.  
 
 

 
 

Figure 7: The basic semiotic square of Algirdas Greimas. The square begins with the 
terms s1 and s2 and unfolds into its complete structure and set of relations. For an 
explanation of each position and relation, see Appendix A. s1 ~s2 (Not s2) s2 ~s1 
(Not s1) S ~S 

 
The weakness of the diagram is the collapse of multiplicity into a homogenous 
structure, but the strength of the diagram rests with the emergence of meaning 
between its fractures (Massumi 1992). The fractures of the gutter offer obstacles in 
the work of navigating a diagrammatic trail. Narration helps smooth these fractures, 
recreating them in line with a shared story. One function of narrative is to mitigate 
deviations from a pattern such that they once again conform to collective standards 
(Bruner, 1990).33 Communities of practice tell stories to maintain coherence, and 
these stories are often based upon shared forms and collective understandings. The 
diagram offers a material anchor, a narrative representation, of these shared forms. 
Just as Hutchins’ diagrams explain and teach us how to see with alternative 

                                                                                                                     
although resembling the semiotic square, fulfills quite another role: that of an evidential marker. However, 
for those familiar with the semiotic square, the image suggests a narrative which could be thought through. 
The connections need not be arbitrary connections, but a map for navigating and narrating the ecology of 
the information in the article discussed by Rip. 
 
 
33 The analysis of how narratives mitigate deviations and smooth an information landscape requires 
further study. Here, I simply offer one of Bruner’s narrative characteristics. How this process unfolds as a 
narrative process is only hinted at, and needs development along the lines of Genette (1972), Lotman 
(1977), and Eco (1976). 
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navigation models, a theorist can refer to the shared model of the diagram as a way to 
legitimize and share their narrative. Thinking through the diagram creates a story of 
the collected data. Narrating the through the diagram, a community locates shared 
navigational markers, such that they may then fill the fractures between them. The 
diagram situates the viewer, and in doing so, is also able to transfer the viewer. Riding 
on a theoretical canoe, the information landscape passes by the steady image.  
 
Conclusion: Diagrams as Trailheads 
 
The question is not, Is it true? But, Does it work? What new thoughts does it make 
possible? With these questions, Brian Massumi (1992) begins his discussion of the 
work of Deleuze and Guattari (1987). And with the same questions, I end my 
discussion of the diagram. The diagram is an operational graphic, a model for 
situating a theorist and constructing an argument. It is a tool for learning how to see, 
how to reason, and how to narrate. Narrative representations are stories waiting to be 
told, forms of matterfunction ready to hold content. As schematic models, they offer 
input structures for running a blend and formalizing discovery. But just as crucial as 
diagrams are to the building process, they also mark the regulation of construction 
and maintenance after completion (Knoespel, 2001). The patent drawing standardizes 
a machine; and the diagrammatic image standardizes a formal argument. The image 
of a diagram is not only a method, but a picture of that method as well. The first 
aspect fulfills its role as a meta-representation: an abstract machine for producing 
representations of a certain form. The second aspect is that certain form, a material 
representation which can be held, compared, shared, and combined with other 
representations. The picture of a diagram may even fall victim of its own method, 
such as the semiotic square did when Greimas’ students built it into the semiotic 
frieze.34 As representations of representations, diagrammatic images contribute to the 
process of unlimited semiosis, the process by which new meaning arises from the 
transformation of meaning (Eco, 1976).  
 
What new thoughts, then, does the diagram make possible? The question differs 
slightly from of the goal of Vannevar Bush, but it shares his hope of personalizing our 
relation to information retrieval. Bush sought the ability to navigate collected records 
by running along the trails of association. But we no longer need to run from text to 
text. Rather, with the aid of powerful search engines, we can instantly jump to those 
texts relevant to our queries. What is needed, therefore, are not trails for locating 
information, but markers for navigating what is returned. Diagrams present tools for 
personalizing this process. As representations of narrative processes and discovery 
principles, we may borrow their spatial reasoning and run new blends. The spatial 
topologies of diagrammatic representations place us upon a trail. But these are not 
records of trails that have already been walked, interpreted, and associated. They are, 
rather, trailheads opening into unexplored territory. Equipped with navigational aids 
of diagrammatic thought, we venture off, in search of new directions and new stories.  
 
 
 
 

                                                 
34 For a brief discussion of the semiotic square’s transformation into an expanding semiotic freize, see 
Jules-Rosette (2004, 17-20). 
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Appendix A: The Semiotic Square of Algirdas Greimas (1987)  
 

 
Relations (50-51)  

1. Hierachical: hyponymic relations are established between s1, s2 and S; ~s1, ~s2 
and ~S  

2. Categorical:  
a. A relation of contradiction is established between S and ~S; and at the 

hierarchically inferior level between s1 and ~s1, between s2 and ~s2  
b. A relation of contrariety articulates s1 and s2 on the one hand, and ~s1 and 

~s2 on the other.  
c. A relation of implication is established between s1 and ~s2 on the one hand, 

and s2 and ~s1 on the other.  
 
Six Systematic Dimensions (51)  

1. Two axes, S and ~S: their relation is one of contradiction. S may be termed the 
axis of the complex: It subsumes s1 and s2. ~S is the axis of the contradictories 
~s1 and not ~s2  

2. Two schemata: s1+~s1 define schema 1; s2+~s2 define schema 2. Each of the 
schemata is constituted by the relation of contradiction  

3. Two deixes: The first is defined by s1 and the relation of implication between s1 
and ~s2; the second by the implication between s2 and ~s1  

 
The Status of Manifested Contents (61-62)  

1. The disjunctive mode a. Disjoined from the other three terms; it is then isolated 
in the manifestation. For example, we have s1 vs. (s2, ~s1, ~s2). Thus, there is 
one manifestation possible for each of the four terms. b. Disjoined from another 
term; it becomes part of a distinctive opposition. There are six possible 
manifestations: s1 vs. s2; s1 vs. ~s1; s1 vs. ~s2; s2 vs. ~s1; s2 vs. ~s2; ~s1 vs. ~s2  

2. The conjunctive mode: Six binary oppositions that define what are called 
complex terms can correspond to the six immanent manifestations of the 
constitutional structure. s1 ~s2 (Not s2) s2 ~s1 (Not s1) S ~S Relation between 
contraries Relation between contradictories Relation of implication  
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