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Abstract 

We present a biologically-inspired system for real-time, feed-forward object 
recognition in cluttered scenes. Our system utilizes a vocabulary of very sparse 
features that are shared between and within different object models. To detect objects 
in a novel scene, these features are located in the image, and each detected feature 
votes for all objects that are consistent with its presence. Due to the sharing of 
features between object models our approach is more scalable to large object 
databases than traditional methods. To demonstrate the utility of this approach, we 
train our system to recognize any of 50 objects in everyday cluttered scenes with 
substantial occlusion. Without further optimization we also demonstrate near-perfect 
recognition on a standard 3-D recognition problem. Our system has an interpretation 
as a sparsely connected feed-forward neural network, making it a viable model for 
fast, feed-forward object recognition in the primate visual system. 

 

Introduction  

Efficient detection of multiple objects in real-world scenes is a challenging problem 
for object recognition systems1. Natural scenes can contain background clutter, 
occlusion, and object transformations which make reliable recognition very difficult. 
In this work we develop a system that efficiently and accurately recognizes partially 
occluded objects despite position, scale, and lighting changes in cluttered real-world 
scenes.  

Most modern recognition approaches represent specific views of objects as 
constellations of localized image features. The Scale Invariant Feature Transform, 
SIFT, is a well-known example (Lowe, 2004). In this approach, gradient histogram-

                                                 
1 Authors occasionally make a distinction between recognition (what is this object?), detection (e.g., is a 
face somewhere in this image?), and multiple object detection (is any of a set of known objects in this 
image?). In this paper, we use the generic term recognition to refer to all of these problems. 
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based SIFT descriptors are computed at Difference-of-Gaussian keypoints and stored 
along with a record of the key-point’s 2D location, scale, and orientation relative to 
the training image. To detect an object in a new image, an approximate nearest 
neighbor search matches SIFT descriptors extracted from the image, and a Hough 
Transform detects and roughly localizes the object.  

To improve performance for multiple objects, similar approaches have employed a 
quantized feature vocabulary2, such that the set of features is shared across different 
object models (Murphy-Chutorian & Triesch, 2005). In this approach, every extracted 
local feature is compared to a much smaller set of vocabulary features by a fast 
nearest neighbor search, and a reference is stored with the key-point’s 2D location 
relative to the location of the object. As the number of objects increases, the number 
of shared features need not grow proportionally. This benefit from shared features has 
been corroborated in a boosting framework (Torralba, Murphy, & Freeman, 2004). 
These authors demonstrated that by allowing only a fixed number of total features, 
using such shared features greatly outperforms a set of classifiers learned 
independently for each object class. Vocabulary-based recognition systems have also 
been proposed for single object recognition and image retrieval (Agarwal, Awan, & 
Roth, 2004; Leibe & Schiele, 2004; Sivic & Zisserman, 2003). This paper presents a 
novel framework for sharing multiple feature types, such as texture and color features, 
within and between different object representations. We learn probabilistic weights 
for the associations between features and objects so that any feature, regardless of 
type, can contribute to the recognition in a unified framework.  

An interesting debate regarding the aforementioned recognition approaches is the 
question of how invariance to transformations (position, scale, rotation in plane, 
rotation in depth) should be achieved. On one end of the spectrum are approaches that 
try to hard-wire such invariance into the system by using invariant features. At the 
other end are approaches that try to learn certain invariance directly from training 
data. Our approach takes an intermediate stance, where position invariance is built 
into the system, and invariance to scale and pose are learned from training data.  

 

System Overview 

In brief, our system works as follows. During training, it creates a set of weighted 
associations between a learned set of vocabulary features and the set of objects to be 
recognized. During recognition, vocabulary features that are detected at interest points 
in the image cast weighted votes for the presence of all associated objects at 
corresponding locations, and the system detects objects whenever this consensus 
exceeds a learned threshold. In the following sections we describe these steps in more 
detail. 

Feature Vocabulary  
The recognition system uses a vocabulary of local features that quantize a potentially 
high-dimensional feature space. Our implementation uses color and texture feature 

                                                 
2 The term vocabulary is analogous to the feature dictionary used in previous work (Murphy-Chutorian & 
Triesch, 2005).   
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vocabularies. The color features are represented as 2D hue saturation vectors, 
corresponding to the local average of 5x5 pixel windows. The Euclidean distance in 
polar hue-saturation coordinate space provides the basis for comparing color features. 
To learn the color feature vocabulary, we extract color features at the locations of 
objects in a large training set of images and cluster them with a standard K-means 
algorithm to arrive at our 500 entry color feature vocabulary.  

The texture features are 40-dimensional Gabor jets (Lades et al., 1993) comprised of 
the magnitude responses of Gabor wavelets with 5 scales and 8 orientations, for 
details see (Murphy-Chutorian & Triesch, 2005). For vertically or horizontally 
oriented Gabor jets, the necessary convolutions can be efficiently calculated with 
separable filters. For all other orientations, the image can be first rotated and then 
processed with the same filters. Our implementation processes all 40 convolutions in 
approximately 200ms on a 2.8Ghz computer. To compare two Gabor jets, x and y, we 
use the normalized inner product,  
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which is robust to changes in brightness and contrast. By normalizing the vectors and 
computing only the inner product at runtime, the calculations are reduced.  To learn 
the Gabor feature vocabulary we extract many Gabor jets at interest point locations 
from around the objects in a large set of training images. As an interest point operator 
we choose the Harris corner point detector which is highly stable over multiple views 
of an object (Harris & Stephens, 1988). We use a modified K-means clustering to 
compute a 4000 entry Gabor jet vocabulary. The modification of the K-means 
clustering consists of normalizing the jets to unit magnitude following each iteration 
of the algorithm. 

Given either feature type, finding the nearest vocabulary features that best represent it 
requires a nearest neighbor search in a 2-, or 40-dimensional space, respectively. An 
approximate kd-tree algorithm accomplishes this efficiently (Mount & Arya, 2005). 
We have found that the system performs optimally if we use the six nearest Gabor jets 
and the single nearest color-jet for each respective vocabulary query. As a 
consequence, our initial encoding of the image in terms of its features is extremely 
sparse with only 6 out of 4000 Gabor features or 1 out of 500 color features being 
activated at a given interest point location.  

Transform Space  
A 2D-Hough transform space (Ballard, 1981; Lowe, 2004) partitions the image space 
into a set of regions or bins for each object. During recognition, the detected 
vocabulary features cast weighted votes for the presence of an object in a specific bin, 
storing the consensus for classification3. The optimal size of the bins will be discussed 
in its own section.  

 

                                                 
3 To avoid the problem of boundary effects from the discrete Hough bins, each feature votes for a bin and 
its 8 neighboring bins. 
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Feature Associations  
Initially, we develop a sparse set of associations between the features and objects. If 
an object and feature are both present in a training image, the system creates an 
association between the two. This association is labeled with the distance vector 
between the location of the feature and the center of a manually drawn bounding box 
around the object, discretized at the level of the bin spacing. Duplicate associations, 
(i.e. same feature, same object, same displacement) are disallowed. Once all of the 
training images have been processed in this way, the system begins a second pass 
through the training images to learn a weight for each of the associations. Assuming 
conditional independence between the inputs given the outputs, Bayesian probability 
theory dictates the optimum weights are given by the log-likelihood ratios,  

( ) ( ),0|1ln1|1ln ==−==≡
dmfdmfdfm
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where Xf  is a Bernoulli random variable describing the presence (Xf = 1) or absence 
(Xf = 0) of feature f in the scene, and Y dm

�  is another Bernoulli random variable 

indicating the presence or absence of object m at a discretized spatial offset d
�

from 
feature f 4. Figure 1 shows the distribution of the log-likelihood weights for the color 
and the texture features. Not surprisingly, the higher-dimensional texture features tend 
to be more discriminative as they have a higher average log-likelihood weight.  
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Figure 1. Distribution of Log-Likelihood Weights for each feature type 
 
Optimum Detection Thresholds  
During recognition, all of the detected features cast weighted votes to determine the 
presence of the objects. If any Hough transform bin receives enough activation, this 
suggests the presence of the object. To determine a detection criterion, we develop 
optimum thresholds from the maximum a posteriori (MAP) estimator under Gaussian 

                                                 
4 It may seem at this point that a naive Bayes rule expansion could be applied with these log-likelihood 
ratios and known priors to obtain the posterior probability than an object is present, but the underlying 
conditional independence assumption is highly erroneous in our case and leads to rather poor performance.  
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assumptions. Let Ym be a Bernoulli random variable describing the presence of the 
object m and let tm be a continuous random variable corresponding to the maximum 
bin value in the Hough parameter space of m. The MAP estimator, �m, describes the 
most likely value for ym given the value of tm: 
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where P(ym) is the prior probability that Ym = mym, and p(tm| ym) is the conditional pdf 
of tm given Ym = ym. We then define the optimum threshold, �m, as the value of tm 
which satisfies  

( ) ( ) ( ) ( )1P1|p1P0|p ===== mmmmmm YYtYYt  (5) 

 
For tm > �m it is more probable that the object is present in the scene, and for tm < �m  it 
is more probable that the object is absent. Assuming that p(tm | ym) is a Gaussian 
distribution, we can fully determine p(tm | Ym = ym) knowing only the first and second 
order moments, �ml and �2

ml, where l = 1 if the object is present. We estimate the 
moments from the training data and find �m by solving the quadratic equation:  
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where p = P(Ym=1).  Assuming �m1 > �m0 and �2

ml > �2
m0 as is always the case for our 

data, the solution is given as  
 

,
2

42

a
acbb

m
−−−=θ     (7) 

    
with  

( )
( )

.
1

ln2

2

0

12
1

2
0

2
10

2
01

2
01

2
00

2
1

2
0

��
�

�
��
�

	 −−+−=

−=

−=

m

m
mmmmmm

mmmm

mm

p
p

c

b

a

σ
σσσσµσµ

σµσµ
σσ

 

 

Experiments and Results  
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The CSCLAB cluttered scenes database was used to test the performance of our 
system (Murphy-Chutorian & Triesch, 2005). It consists of 500 scenes of 50 everyday 
objects against cluttered, real-world backgrounds with significant occlusion. Each 
scene contains 3 to 7 objects as shown in Figure 2. The objects are presented at 
roughly the same viewpoint in every scene, but there remains differences in depth, 
position, rotation, and lighting. The depth changes cause considerable scale variation 
among the object classes, which vary by a factor of two on the average. The system 
learns scale-invariant representations by building a conglomerate set of associations 
from training images of objects at representative scales. Alternatively, it could be 
trained with fewer scenes, explicitly presented at multiple scales (Burt & Adelson, 
1983). In addition, the database contains scenes of all ten backgrounds without 
objects, as well as scenes of every background with each object by itself. All of the 
scenes have associated XML files that store the manually-labeled bounding boxes and 
names of the objects for supervised training and evaluation.  

The dataset was split into three sets. The first set contained 100 multiple object scenes 
which were used to create the feature dictionary. The second set contained 100 
additional multiple-object scenes and all of the individual object scenes. This set 
provided the training data for learning associations between vocabulary features and 
objects and the corresponding weights. The third set, containing the remaining 200 
multiple-object scenes, was presented to the system for recognition.  

 
 

Figure 2. Labeled Example Scene from the CSCLAB dataset  

 
Feature Sharing  
Figure 3 demonstrates the amount of feature sharing in the learned representations for 
the 50 objects from the CSCLAB data base. In Figure 3(a) we show histograms of 
how frequently a feature is shared between representations of different objects. 
Interestingly, there is a sizable fraction of features that are shared by many objects, 
and only few features are not shared at all, i.e. they are specific to one object only. 
Figure 3(b) shows how often a feature is shared within one or multiple views of a 
single object. Noting that there are no duplicate associations, this denotes the number 
of associations between this feature and the object with different discretized 
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displacements. One can see that this intra-object sharing is happening less often than 
the inter-object sharing, but this is a meaningless ratio, since it directly depends on 
our choice of the Hough bin size and number of objects.  
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(a) Histogram of inter-object sharing, showing the number of objects that connect to 
each feature for color-jets (left) and Gabor jets (right). 
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 (b) Histogram of intra-object sharing, showing the number of times a feature 
connects to the same object for color-jets (left) and Gabor jets (right).  
 
Figure 3. Feature Sharing  
 

Optimal Bin Size  
The optimal size of the Hough transform bins is determined by a trade-off between 
two competing factors. If the bin size is too small, votes from the same object may 
fall into different bins because of variations in object appearance such as scale or 
rotation. Larger bins, however, increase the risk of a spurious accumulation of votes 
from background clutter or unrelated objects into a single bin, which can lead to a 
false positive detection. Because of this trade-off, there exists an intermediate bin size 
that yields optimal performance (Aboutalib, 2005). We investigated this effect by 
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systematically varying the bin size5. Figure 4 shows the result. The tradeoff favoring 
intermediate bin sizes is clearly visible. Based on this result, we use 16x16 pixel 
Hough transform bins to maximize recognition. 
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Figure 4. Area under the averaged ROC curves for various bin sizes  
 

Recognition Performance  
Figure 5 and Figure 6 show histograms of the detection rates and false positive rates 
for the 50 objects in the CSCLAB dataset. The detection rate is defined as the fraction 
of objects that were successfully detected, and the false positive rate is the fraction of 
images in which an object is incorrectly detected. In this application, the system is 
able to detect most of the objects more than 80% of the time while maintaining less 
than a 5% false positive rate. The system has the most difficulty with the objects that 
lack sufficient texture, or have significant transparencies. Performance examples are 
shown as ROC curves for the best, median, and worst individual ROC curves are 
given in Figure 7. Figure 8 shows an average of the spline-interpolated ROC curves 
for all of the objects. In the course of the experiment, 10 of the 50 objects were 
perfectly recognized with a 100% detection rate and no false positives. Figure 9 
provides examples of the system’s recognition ability. On a 2.8Ghz personal 
computer, our system requires approximately one second to recognize all of the 
objects in a 640x480 pixel image.  

 

 
 

                                                 
5 In this experiment we kept the bin size fixed for every object, but an object specific selection of the bin 
size may further improve performance. 
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Figure 5. Histogram of the individual object detection rates at optimum thresholds  
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Figure 6. Histogram of the individual object per-image false positive rates at 
optimum thresholds 
 
Neural Network Interpretation and Relation to Models of 
Biological Object Recognition  
It is frequently argued that the remarkable speed of primate object recognition 
suggests a processing architecture that is essentially feed-forward in nature, and 
prominent models of biological object recognition are feed-forward processes 
(Fukushima, Miyake, & Ito, 1983; Riesenhuber & Poggio, 1999). Feed-forward 
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models are unlikely to be able to account for all aspects of primate object recognition, 
but they may be a reasonable approximation in many situations.  

We can interpret our system as a simple feed-forward neural network. In this case, the 
input layer consists of the vocabulary features at every possible discretized location. 
The output layer consists of the objects at every possible Hough bin. The activation of 
an output node, yj = y(mj ,qj ), is given by the linear summation,  
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and the weights of the network are the log-likelihood ratios of the features mentioned 
earlier. In this context, xi is the ith binary input node that “fires” whenever the shared 
vocabulary feature, fi, is found anywhere inside the unit’s “receptive field,” and wij is 
the weighted connection between yj and xi. pi is the location of input xi, and qj is the 
location of yj . We assume wij = 0 whenever yj and xi are not connected. Although the 
weighted connections are learned from the relative displacement between the input 
and output nodes, this can be interpreted as weight sharing in a neural network with 
connections based on absolute displacements.  
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Figure 7. ROC curves and estimated conditional pdfs (black: object absent, gray: 
object present) for individual object examples  
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Figure 8. Averaged ROC curve for all 50 objects  

The feed-forward neural network interpretation of our system suggests that one could 
view it as an abstract model of primate object recognition. In fact the introduction of 
Gabor wavelet features into computer vision systems was inspired by biological 
findings. In this context, our shared Gabor jet features loosely correspond to shape 
selective cells in area V4. Compared to the other models mentioned above, the 
binning operation inherent in the Hough transform mechanism corresponds to non-
linear operations that introduce a degree of shift invariance in the above models. The 
sparseness of connections from these features to object detectors (corresponding to 
populations of cells in inferotemporal cortex) is also in line with biological 
considerations, but in stark contrast to many previous models of biological object 
recognition, we obtain excellent performance on a difficult real-world recognition 
problem. To do so in real-time paves the way for the development of more elaborate 
models of visual cognition that model object recognition and learning in the context 
of ongoing behavior.  

 
Discussion  
We presented a new framework for multiple-object detection with a vocabulary of 
shared features. Using multiple feature types and sparse, weighted associations 
between vocabulary features and objects, we demonstrated object detection in 
cluttered real-world scenes despite significant scale variation and occlusion in real-
time. Since the system can be interpreted as a feed-forward neural network, it may be 
viewed as an abstract model of object recognition in the primate visual system, 
although this was not the main focus of this research.  

In a full 3-D recognition task on the otherwise much simpler COIL database, our 
system showed excellent performance. Evaluating our system on a full 3-D 
recognition problem that also includes clutter, occlusions, and lighting variations 
remains a topic for future research. At present, there are no available benchmark 
databases of this kind. Performance gains could be achieved by the addition of other 
feature types. Transparent objects and objects lacking unique texture and color were 
the most difficult to detect, and this could be remedied by the addition of features that 
could detect these objects by their characteristic shape. The framework presented in 
this paper easily accommodates additional features. A further avenue for future 
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research is the incorporation of stereo information and the explicit modeling of object 
occlusions (Eckes, Triesch, & Malsburg, 2005).  

We would also like to investigate the ability to learn objects with only minimal 
supervision, since hand-labeled training data as we have used here is tedious to create. 
Recent pilot work has demonstrated this system’s potential for learning object 
representations in a semi-autonomous fashion through online demonstration, where 
objects are simply shown to the system for an extended period of time as they 
undergo scale and pose changes and the system detects, tracks, segments, and learns 
to recognize these objects without additional human intervention (Murphy-Chutorian, 
Kim, Chen, & Triesch, 2005).  

 

 
 
Figure 9. Example Recognition Results (squares indicate the estimated object center)  
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