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Independent component analysis (ICA) is a potentially powerful tool for analyzing event-
related potentials (ERPs), one of the most popular measures of brain function in cognitive 
neuroscience. Based on the statistics of the electroencephalogram (EEG), from which 
ERPs are derived, ICA may be able to extract multiple, functionally distinct sources of an 
ERP generated by disparate regions of cerebral cortex. Extracting such sources greatly 
increases the informativeness of ERPs by providing a cleaner, less ambiguous measure of 
source activity and by facilitating the identification of this activity across different 
experimental paradigms. The main purpose of this review article is to explain the logic of 
ICA, to illustrate how ICA could in principle extract spatiotemporally overlapping ERP 
sources, and to review evidence that ICA is a well motivated methodology that can extract 
latent ERP sources in practice. In addition, we close the article by noting potential 
problems with ICA and by comparing it to three alternative methods for extracting ERP 
sources/components: spatial principal component analysis, source localization, and 
temporal principal component analysis. 

ue to their impeccable temporal resolution, 
noninvasiveness, and affordability, event-
related potentials (ERPs) have been and 

continue to be one of the most popular measures of 
brain activity in cognitive neuroscience.  ERP 
research has provided valuable insight into many 
domains of brain function (e.g., attention — 
Martinez et al., 1999, visual object recognition — 
Johnson & Olshausen, 2003, and language 
comprehension — Kutas, Van Petten, & Kluender, 
2006). However, the informativeness of ERPs 
(and, more generally, the electro-encephalogram 
from which ERPs are derived) is limited by the 
fact that they are most likely generally generated 
by multiple, functionally distinct neural sources 

whose scalp potentials overlap temporally and 
spatially (Dale et al., 2000). This spatiotemporal 
overlap confounds our ability to measure those 
sources (e.g., Hagoort, 2003) and makes it difficult 
to compare ERP phenomena related to different 
types of stimuli or experimental paradigms (e.g., 
linguistic and non-linguistic stimuli — Coulson, 
King, & Kutas, 1998; Osterhout & Hagoort, 1999). 
 
One method for dealing with the problem of 
spatiotemporally overlapping ERP sources is 
independent component analysis (ICA). As 
typically applied to ERP data sets, ICA 
decomposes the data into a set of independent 
components (ICs) via a basis of linear spatial 
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filters (LSFs). To the extent that ICs correspond 
to latent ERP sources, ICA provides a cleaner, 
less ambiguous measure of these sources and 
allows their identification across different 
experimental paradigms. The main purpose of this 
review article is to illustrate how ICA could in 
principle extract spatiotemporally overlapping 
ERP sources, to briefly explain how ICA learns a 
basis of LSFs for a particular data set, and to 
review evidence that ICA is a well-motivated 
methodology that can extract latent ERP sources 
in practice. In addition, we close the article by 
noting potential problems with ICA and by 
comparing it to three alternative methods for 
extracting ERP sources/components: spatial 
principal component analysis, source localization, 
and temporal principal component analysis. 
 
 
2. Sources of Scalp Potentials 
 
To understand why LSFs are useful for ERP 
analysis, one must first understand the 
relationship between electric potentials recorded 
at the scalp and their neural and non-neural 
generators. 
 
2.1 Neural Sources 
 
The electrical activity of the brain that is 
measurable at the scalp is called the electro-
encephalogram (EEG). Event-related potentials 
(ERPs) are the portion of the EEG whose phase is 
related to the onset of a class of events and is 
typically derived by averaging multiple samples 
of EEG time-locked to the occurrence of such 
events (e.g., the onset of a visual stimulus or a 
button press). Much of the brain’s electrical 
activity is practically invisible at the scalp (due to 
the small magnitude of the activity or interactions 
between sources of opposite polarity — Kutas & 
Dale, 1997). Indeed, it is generally believed that 
the great bulk of the EEG is generated by the 
synchronous activation of post-synaptic potentials 
of adjacent cortical pyramidal cells (Baillet, 
Mosher, & Leahy, 2001; Kutas & Dale, 1997). 

This activity can be accurately approximated as a 
finite set of equivalent current dipoles (ECD) or 
multipoles (ibid.). In this framework, the EEG is 
the linear combination of the electrical activity of 
a discrete set of neural electrical sources (ibid.). 
 
To illustrate, consider a situation in which there is 
only a single neural source1, y1, and two scalp 
electrodes, x1 and x2. The voltage recorded at each 
scalp electrode is simply a scaled version of the 
source’s voltage (Figure 1). The polarity and 
magnitude of the scaling is determined by the 
location and orientation of the source relative to 
the electrode and the conductive properties of the 
medium between the source and the electrode. 
This relationship can be represented with a linear 
function where the source voltage is multiplied by 
a “gain vector,” g, to obtain the scalp voltages: 
 

x(t) =
x1(t)
x2(t)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

.04
−.15

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ y1(t) = gy1(t)   (1) 

 
As long as the position of the source relative to the 
electrodes and the conductive properties of the head 
do not change, this linear relationship will remain 
constant for each time point, t. Note that the gain 
vector defines the scalp topography of a source. 
With only one source, the topography of the scalp 
potentials remains constant (Figure 2: B & C). 
 
To make our example slightly more complicated, 
let us add two more sources. Equation 1 becomes: 
 

x(t) =
x1(t)
x2(t)
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= Gy(t)  (2) 

 
where the three gain vectors form a gain matrix, G. 
Now each scalp electrode measures the sum of the 

                                                 
1 “Neural source” refers to highly correlated patches of 

cerebral cortex. This could be a single localized patch of 
cerebral cortex that could be accurately modeled as a 
single ECD or it could be a distributed set of patches 
that would require multiple ECDs to be accurately 
modeled. 
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scaled voltages of the three sources (Figure 3). As 
before, the scalp topography of each source is 
static and defined by its gain vector. However, as 
there is more than one source and the sources are 
at least somewhat independent and have distinct 
topographies, the topographies of the individual 
sources combine such that the topography of the 
scalp potentials changes over time (Figure 2: D). 
 
In reality, the neural sources of a segment of EEG 
are likely to be far more numerous than three. 
Assuming that a patch of cortex on the order of 25 
mm2 is the smallest neural unit whose electrical 
activity is practically measurable from the scalp 
(Baillet et al., 2001) and that the surface area of a 
hemisphere of human cerebral cortex is 
approximately 80,000 mm2 (Van Essen, Drury, 
Joshi, & Miller, 1998), the number of EEG sources 
could be as high as 6,400. However, the number of 
sources contributing to an ERP is probably much 
smaller than this upper bound. The activity of 
multiple patches of cortex may be correlated 
enough that they can be approximated as a single 
source. 
 
Moreover, the activity of some sources may not be 
sufficiently phase-dependent on the onset of the 
event used to derive the ERP to contribute to the 
ERP or may be cancelled out by sources of 
opposite polarity. In addition, some sources may 
be too weak and too far from scalp electrodes to 
contribute significantly (the strength of a source 
potential falls off as an inverse function of distance 
squared — Kutas & Dale, 1997). In fact, many 
ERP phenomena can be modeled with only a 
handful of sources (Groppe, 2007). Unfortunately, 
it is impossible to know with certainty how many 
sources generated a particular segment of an ERP. 
For example, multiple ERP sources with similar 
scalp distributions may be inaccurately modeled by 
fewer sources (i.e., a few model sources could fit 
the data very well, even though, in reality, a greater 
number of sources generated the data). On the 
other hand, a few ERP sources can be inaccurately 
modeled by too many sources (Liu, Dale, & 
Belliveau, 2002). 

2.2 EEG Artifacts 
 
Attempts to measure ERPs are complicated by the 
fact that the brain is not the only source of the 
electric potentials recorded at the scalp and by 
technical disturbances (Talsma & Woldorff, 
2005).  Phenomena such as blinks, eye 
movements, and head muscle activity generate 
electrical potentials at amplitudes that can be 
orders of magnitude larger than ERP amplitudes 
and can seriously confound ERP analysis. Sensor 
noise, caused by poor connections between the 
scalp and electrodes and 60 Hz line noise, also 
commonly pollute EEG recordings. 
 
The effect of many of these phenomena on 
recorded scalp potentials can be well 
approximated by the same framework used to 
model the EEG: each artifact is modeled as a set 
of discrete electrical sources with fixed scalp 
distributions whose activity combines linearly at 
the scalp with other electrical sources. In terms of 
Equation 2, each artifact can be approximated by 
one or more elements in the source vector, y, and 
a corresponding number of columns in the gain 
matrix, G.  
 
For example, blink potentials (Ille, Berg, & 
Scherg, 2002; Jung, Makeig, Humphries et al., 
2000; Jung, Makeig, Westerfield et al., 2000), 
scalp muscle activity (Jung, Makeig, Humphries 
et al., 2000), and 60 Hz line noise (Jung, Makeig, 
Humphries et al., 2000; Tang, Sutherland, & 
McKinney, 2005) each can be well approximated 
as a single source. Eye movements can be 
successfully modeled by two sources, one each 
for movement in the horizontal and vertical planes 
(Ille et al., 2002). 
 
 
3 Linear Spatial Filters 
 
Given that the electric potentials of different EEG 
and EEG artifact sources linearly combine and 
can have distinct topographies, linear spatial 
filters are a potentially powerful tool for teasing 
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apart these different sources despite their 
spatiotemporal overlap. A linear spatial filter 
(LSF) is a weighted sum of the potentials at each 
electrode. For example, the vector, w, below 
would be an LSF for two electrode data: 
 

u(t) = .06 −.14[ ]
x1(t)
x2(t)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = wT x(t)  (3) 

 
The weights to each electrode define the LSF and 
determine the output, or “activation,” of the filter, 
u. While each electrode measures a weighted sum 
of the electrical activity of neural and EEG 
artifact sources, the LSF provides a re-weighted 
sum of those sources and functions like a “virtual 
electrode” (Spencer, Dien, & Donchin, 2001). 
Figure 4 (A) plots the activation of the LSF from 
Equation 3 when input the scalp-recorded data 
from Figure 3. The activation is very similar to 
the activity of Source y1 (rcos=0.89)2 but smaller 
in amplitude. In other words, the filter sums the 
activity of Source y2 and Source y3 with small 
weights and Source y1 with a relatively large 
weight. 
 
We can compute the weight that an LSF, w, 
assigns to a source with gain vector, g, from the 
following equation: 
 
cos(θ) w g = wTg     (4) 
 
where θ is the angle between the filter and source 
gain vectors, |w| is the length of the filter vector, 
and |g| is the length of the source’s gain vector. 
The first term in this equation, cos(θ), takes a 
                                                 

                                                

2 rcos is the “cosine similarity” between two vectors (i.e., 
the cosine of the angle between the two vectors) and is 
analogous to Pearson’s linear correlation coefficient, r. 
An rcos of 1 indicates that two vectors are identical save 
for a possible difference in magnitude (i.e., they point in 
the same direction). An rcos of — 1 indicates that two 
vectors point in exactly opposite directions and an rcos 
of 0 indicates that the vectors are orthogonal. More 
specifically, the cosine similarity between two vectors x 
and y is xTy/(|x||y|). 

value between -1 and 1. If the filter and source 
gain vectors are perpendicular (i.e., θ=90 or 270 
degrees), then cos(θ) is zero and the filter will not 
pick up the source’s activity at all. As the filter 
and source gain vectors come closer together, the 
angle between them shrinks and cos(θ) 
approaches one. As the angle between the two 
gain vectors approaches 180 degrees, cos(θ) 
approaches negative one. The first term interacts 
with the final term, |g|, to make the filter more 
sensitive to some sources than others. The 
remaining term in the equation, |w|, simply scales 
the output of the filter and will affect the weights 
between the filter and all sources equally. 
 
In light of Equation 4, we can now understand 
why our example filter in Figure 4 works as it 
does by visualizing the filter and source gain 
vectors in “electrode space” (Figure 4: B). The 
filter is nearly perpendicular to the gain vectors of 
Source y2 and Source y3, and nearly parallel to the 
gain vector of Source y1. Hence the filter gives 
greater weight to Source y1 than to the other 
sources. The angle between the filter and Source 
y1’s gain vector is acute, hence the filter picks up 
Source y2’s activity with the same polarity. 
Finally, the filter is short, which contributes to the 
amplitude of the filter output being much smaller 
than the amplitude of Source y1. 
 
3.1 LSF Limitations and Difficulties 
 
Note that in this example, the filter cannot 
perfectly capture one of the sources and 
completely filter out the other two. That would 
require the filter to be perpendicular to two of 
the sources and non-perpendicular to the third. 
When there are more than n sources (where n is 
the number of electrodes) with linearly 
independent gain vectors3, it is impossible to 
perfectly filter out the activity of one source 

 
3 A set of linearly independent gain vectors means that none 

of the gain vectors equals a weighted sum of the other 
gain vectors. For example, if there are two sources and 
two electrodes, the gain vectors are linearly independent 
if they are not parallel. 
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from that of all the other sources4. Given that the 
measurements of an electrode will be polluted by 
a degree of sensor noise that will be somewhat 
independent of the sensor noise at other 
electrodes (e.g., Section 4.1), there will always 
be a set of n linearly independent sources in 
addition to any neural or other artifact sources. 
Thus, it will be impossible to perfectly isolate 
any single source. While steps can be taken to 
minimize this sensor noise (e.g., averaging 
multiple samples of the EEG responses to the 
same class of events), there may still be more 
non-negligible neural and EEG artifact sources 
than electrodes and these may force a degree of 
filter error, sometimes called “misallocation of 
variance” (Wood & McCarthy, 1984). Also 
notice that if the gain vectors of two of the 
sources were parallel (i.e., the angle between the 
vectors was 0 or 180 degrees), that no spatial 
filter would be able to differentiate between the 
two of them. Spatial filters require topography 
differences to separate sources. 
 
While it is important to keep these possible LSF 
limitations in mind, in practice, LSFs may be able 
to quite accurately extract sources with large 
activations or gain vectors especially when 
numerous electrodes are used to measure the 
EEG. When a source’s activity or gain vector is 
large, its contribution to the LSF output can 
effectively overpower that of other sources that 
the LSF is not able to ignore (Ghahremani, 
Makeig, Jung, Bell, & Sejnowski, 1996; 
Kobayashi, James, Nakahori, Akiyama, & 
Gotman, 1999; Makeig, Jung, Ghahremani, & 
Sejnowski, 2000). Moreover, with each additional 
electrode, an LSF gains a free parameter that can 

                                                 

                                                

4 For an LSF, w, to perfectly filter out one source from n 
other sources whose gain vectors (gi, 1≤ i ≤n) are 
linearly independent, the following would have to be 
true: wTgi=0 for all 1≤ i ≤n. However, if this were true, 
the inner product of w and any possible gain vector 
would be zero (i.e., w would be the zero vector) since 
the n gain vectors of the unwanted sources span the 
space of possible vectors (when there are n electrodes). 
Thus w would not be able to extract any sources. 

improve (or at worst, leave the same) the LSF’s 
ability to extract a particular source. Additional 
electrodes also reduce the likelihood that multiple 
sources have indistinguishable topographies5. 
 
Indeed, the greatest difficulty with using LSFs to 
extract EEG sources is probably not these 
fundamental limitations. Rather, it is knowing 
how to derive an LSF that accurately extracts 
large EEG sources of interest. This difficulty 
stems from the fact that it is impossible to know, 
with certainty, what the sources of a particular 
set of scalp potentials are. As there are possibly 
many more scalp potential sources than 
electrodes, there are an infinite number of source 
configurations that could have generated a given 
segment of EEG data (this is known as the “EEG 
inverse problem” —  Kutas & Dale, 1997). 
Because the exact source configuration is 
uncertain, it is not clear what the latent sources 
are to be extracted let alone what LSF, if any, 
could extract them. 
 
To deal with this problem, it is necessary to 
make assumptions about the sources of an EEG 
data set in order to derive LSFs that might 
extract some of these sources. The following 
three sections review three of the most popular 
methods for deriving LSFs from EEG data sets, 
each based on different source assumptions. The 
first two of these, independent component 
analysis (ICA) and principal component analysis 
(PCA), derive LSFs primarily from statistical 
assumptions. In contrast, the lattermost class of 
techniques, source localization, relies primarily 
on anatomical models to derive LSFs. The 
emphasis of the review will be on ICA. 
 
 

 
5 If two sources have different topographies, g and g’, then 

there must be at least two locations on the scalp such 
that g1/g’1≠g2/g’2. Each additional electrode increases 
the probability that one records from such a pair of scalp 
locations. 
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4. Independent Component Analysis for 
Deriving LSFs 
 
ICA is a blanket term for a family of algorithms 
that learns a set of linear filters from the statistics 
of a data set by trying to make the output of the 
filters temporally independent6 or relatively so 
(Hyvärinen et al., 2001). The logic of ICA, as 
typically applied to EEG data, is clear when 
formalized as an attempt to fit a linear generative 
model to a time series of observations (Roweis & 
Ghahramani, 1999): 
 
x(t) = Au(t)      (5) 
 
where u is an n-dimensional vector of 
independent sources whose activity linearly, 
instantaneously combines via a full rank “mixing 
matrix,” A, to create the n-dimensional7 
observations, x. When used to model EEG data, A 
is a model of the EEG gain matrix, G (i.e., each 
column of A defines the topography of a putative 
source). The problem for ICA is then to learn A 
or equivalently, the “unmixing matrix,” W, which 
is the inverse of A and consists of a basis of n 
LSFs that extracts the latent source activity. 
 
u(t) = Wx(t) = A−1x(t)   (6) 
 
The intuitive reason why it should be possible to 
                                                 

                                                

6 Two random variables, c and d, are statistically 
independent if and only if knowing the value of one of 
the variables provides no information about the value of 
the other variable. More explicitly, if c and d are 
independent, then the conditional probability 
distribution of c given the value of d simply equals the 
probability distribution of c (i.e., P(c|d)=P(c)) and vice-
versa (i.e., P(d|c)=P(d)). Independence is related to 
linear correlation. If two variables are independent then 
they are uncorrelated. However, two uncorrelated 
variables are not necessarily independent. A special case 
is Gaussian random variables, which are independent if 
they are uncorrelated. 

7 For some ICA algorithms, the dimensionality of the 
sources and data do not have to be the same, but when 
ICA is applied to EEG/ERP data it is typically assumed 
that the number of sources equals the number of 
electrodes and that A is full rank. 

learn such “unmixing” LSFs is that the individual 
dimensions (i.e., scalp electrodes in the context of 
EEG) of a mixture of independent sources will 
generally be somewhat dependent, since the 
activity of a single source contributes to multiple 
dimensions. Thus, by trying to unmix the data in a 
way that minimizes these temporal dependencies, 
ICA may be able to recover the latent sources 
(e.g., Figure 5). The specifics of how this 
unmixing is done differ from ICA algorithm to 
algorithm. Some ICA algorithms find W 
analytically by estimating statistics of x (e.g., 
second-order blind identification —  Belouchrani, 
Abed Meraim, Cardoso, & Moulines, 1997) while 
others iteratively improve the fit between an 
estimate of u and the assumed generative model 
(e.g., extended INFOMAX ICA — Lee, Girolami, 
& Sejnowski, 1999). 
 
To learn W, all ICA algorithms have to assume 
that the sources are somehow non-Gaussian or are 
somehow non-white (i.e., the activity at each time 
point is not correlated with the activity at any 
other time point), because if the sources are white 
Gaussian, then there are an infinite number of 
unmixing matrices that will make the unmixed 
data independent and the problem is under-
constrained8 (Bell & Sejnowski, 1995). The 
specifics of these assumptions differ across ICA 
algorithms. For example, extended INFOMAX 
ICA (Lee et al., 1999), perhaps the most popular 
ICA algorithm applied to EEG data, assumes 
independent supergaussian or subgaussian sources 
but makes no additional assumptions about 
temporal structure. Supergaussian random 
variables (e.g., random samples of the potentials 

 
8 Gaussian random variables are independent if they are 

uncorrelated. For any particular mixture of random 
variables, one can find an unmixing matrix, W, that 
“spheres” the mixture such that each dimension is 
uncorrelated and of equal variance. Post-multiplying W 
with an orthonormal matrix J will simply rotate the 
output of W. Since a rotated sphere of probability 
density is indistinguishable from the original sphere, the 
output of JW is also uncorrelated and of equal variance. 
Since there are an infinite number of orthonormal 
matrices J, there are an infinite number of sphering 
matrices, JW.  
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generated by occasional bursts of muscle activity 
or intermittent oscillatory brain activity) have a 
probability density function (pdf) with a much 
stronger peak at the mean and heavier tails than a 
Gaussian distribution with the same variance 
(Figure 6). A subgaussian random variable (e.g., 
random samples of a sine wave) has a much 
flatter pdf around the mean than a Gaussian 
distribution with the same variance (Figure 6). 
Alternatively, another ICA algorithm, second-order 
blind identification (SOBI — Belouchrani et al., 
1997), assumes that the sources are uncorrelated 
at multiple time lags (e.g., the activity of a source 
at time t is uncorrelated with the activity of 
another source at time t+100 ms) and have unique 
normalized spectra, but assumes nothing about 
the Gaussian nature of the sources. 
 
4.1 An Example of ICA 
 
To illustrate how ICA might be useful for 
extracting spatiotemporally overlapping ERP 
sources, consider a hypothetical 12 electrode EEG 
data set that was generated by 8 sources and 12 
mild uncorrelated white Gaussian sensor noise 
sources (SD=1.25 μV; in comparison the SD of 
each neural source at the electrode to which it 
maximally projected was at least 3.42 μV) in two 
experimental conditions. The average activations 
of the neural sources (i.e., “source ERPs”) in the 
two conditions are plotted in Figure 7 and the 
linear correlations between each possible pair of 
sources are presented in Table 1 (A). The average 
responses of many sources appear to differ 
significantly across the two conditions, are 
generally mildly correlated with one another 
(median |r|=.25) and can be quite correlated. For 
example, the ERPs of y5 and y8 are effectively 
identical and the ERPs of y2 are rather correlated 
to those of y1 and y3. However, the strong source 
ERP correlations do not necessarily reflect the 
degree of correlation in the single trial activity 
from which the source ERPs are derived. These 
correlations are presented in Table 1 (B) and are 
generally near zero (median |r|=.02). Figures 8-9 
illustrate how the greater single trial independence 

is possible. Finally, one pair of sources (y5 and y8) 
continues to exhibit correlated activation even in 
the single trials because the two ICs are inter-
hemisphere homologues of one another. 
 
These sources, plus the 12 sensor noise sources, 
combine at the scalp via a 20 x 12 gain matrix. 
Each gain vector is visualized topographically in 
Figure 10 and the similarity of each possible pair 
of gain vectors is presented in Table 2. Notice that 
the gain vectors of the sources generally overlap 
(median |rcos|=.27) and can be quite similar. For 
example, g1is quite similar to g2, g6, and g7. 
 
The resulting scalp data are plotted in Figure 11. 
A difference between conditions is most apparent 
at fronto-central electrodes. Figure 12 visualizes 
the difference between conditions more clearly by 
plotting the “difference wave” between the two 
conditions, the data from Condition Blue minus 
the data from Condition Red. Based on the 
statistics of the EEG from both conditions (not 
shown), extended INFOMAX ICA unmixed the 
EEG into 12 components. The average activations 
of these components in the two conditions are 
plotted in Figure 13. The average activations of 
the first eight ICs correspond quite closely to 
those of the eight neural sources (compare to 
Figure 7; see also Table 3: A—Column 4) 
although all of the ICs capture a bit of sensor 
noise. The single trial activations of these ICs are 
also generally similar to that of the eight neural 
sources though much less so for ICs 1, 6, and 8 
(Table 3: A—Column 5). For the first seven ICs, 
the less accurate single trial activations stem from 
the zero-mean sensor noise whose contribution to 
IC activations is mitigated by averaging (Table 3: 
B). However, the poor match between the single 
trial activation of IC 8 and Source 8 reflects the 
failure of ICA to extract Source 8 because it is 
highly correlated with its right hemisphere 
homologue, Source 5 (Table 1: B). The last four 
ICs correspond to residual sensor noise. 
 
Figure 14 presents the topographies of the 12 ICs. 
The topographies of the first eight ICs correspond 
quite closely to those of the eight neural sources 
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(compare to Figure 10; see also Table 3: A— 
Column 3). In fact the topographies of ICs and 
sources are generally more similar than their 
activations. This illustrates that while it is 
generally impossible to perfectly extract the 
activation of a source using an LSF when there are 
more sources than electrodes, IC topographies can 
still perfectly match those of EEG sources. The 
two ICs that most poorly match the topographies 
of their corresponding sources are ICs 5 and 8. 
This reflects the fact that the two sources are 
highly correlated. Indeed, the topography of IC 5 
appears to be a blend of the topographies of 
Sources 5 and 8. The last four ICs correspond to 
residual sensor noise and have splotchy, non-
dipolar topographies (see Footnote 10). Note also 
that the degree to which an IC’s topography 
matches that of a source does not necessarily 
correspond to the degree to which that IC’s 
activation matches the activation of that source. 
For example, the topography of IC 1 is nearly 
identical to the topography of Source 1 (rcos=.99), 
which is almost perfect. However, the single trial 
activation of IC 1 is a relatively mediocre match to 
that of Source 1 (rcos=.74). One can see how this is 
possible when one considers that an IC’s mixing 
vector (topography) and unmixing vector (LSF) 
are somewhat independent. For instance, Figure 15 
(B) displays the ideal mixing and unmixing vectors 
for a hypothetical two source/two electrode data 
set (Figure 15: A), which perfectly capture each 
source’s activity and topography. Now imagine 
that Unmixing Vector 2 gets corrupted so that it no 
longer perfectly extracts Source 2 (Figure 15: C). 
Counterintuitively, Mixing Vector 2 still perfectly 
matches the topography of Source 2, but Mixing 
Vector 1 no longer matches the topography of 
Source 1 even though Unmixing Vector 1 still 
perfectly extracts the activity of that source.  
 
To get a sense of what each IC contributes to the 
scalp data, it is useful to compute the “scalp-
projection” (or “back-projection”) of a component’s 
activity: 
 
ˆ x (t) = a iui(t)     (7) 
 

where ui(t) is the activation of the ith component 
at time t and ai is the mixing vector for the ith 
component. For example, IC 2's contribution to 
the difference between the ERPs from the two 
conditions is plotted in Figure 16. IC 2 
contributes greatly to the difference at fronto-
central midline electrodes, but contributes very 
little at the posterior and leftmost electrodes. 
 
One can quantify the magnitude of this 
contribution by measuring the “percentage 
variance accounted for,” ν, by the scalp-projected 
activity: 
 

ν =1−

(x j (t) − ˆ x j (t))
2

t
∑

j
∑

x j (t)
2

t
∑

j
∑

   (8) 

 
where x j (t)  is the ERP voltage at time t and 
electrode j, ˆ x j (t)  is the component’s scalp-
projection at time t and electrode j. ν is one minus 
the “residual variance,” error measure. Residual 
variance is a unitless measure that is simply the 
sum-squared difference between the scalp and 
scalp-projected data normalized by the power of 
the scalp data. It is 0 if the scalp-projected activity 
perfectly matches the scalp data and accounts for 
all of the variance of the data. Residual variance 
approaches infinity (and ν negative infinity) as 
the difference between the two grows increasingly 
large without bound. The percentage variance of 
the difference wave accounted for by IC 2 is 39%. 
 
Figure 17 plots IC 5’s contribution to the 
difference between the ERPs from the two 
conditions, which is negligible at all but the 
lateral posterior electrodes (x9 and x12). This 
contribution accounts for 6% of the difference 
wave’s variance. The scalp-projection of ICs 2 
and 5 combined accounts for 44% of the 
difference wave’s variance (not shown). Note that 
the variance accounted for by both components 
together does not equal the sum of the variance 
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accounted for by each component alone. This will 
generally be the case, unless the basis of LSFs is 
orthogonal (e.g., as in principal component 
analysis, Section 5), and is a quirk of the 
percentage variance accounted for measure. 
 
4.2 ICA Ambiguities 
 
4.2.1 ICA Scaling Ambiguity 
 
In this simple example, readers may have noticed 
two ambiguities in ICA decompositions. The first 
is that the polarity and magnitude of the LSFs are 
arbitrary. To illustrate, consider two unmixing 
matrices W and W′ that are identical except that 
the first row of W is — 2 times the first row of 
W′: 
 
w1 = −2 ′w 1     (9) 
 
The output of the first component of W will be 
twice as large as that of W′ and of opposite 
polarity. However, scaling a random variable does 
not affect its independence relations with other 
random variables, so W and W′ are equally valid 
by ICA criteria. 
 
The corresponding mixing matrices, A and A′, 
will have the inverse relationship. The first 
column of A′ will be -0.5 times the first column 
of A: 
 

a1 = −
′ a 1

2
     (10) 

 
Consequently, the scalp-projections of the first 
component of the two decompositions will be 
exactly the same: 
 

 ′ a 1 ′ w 1x(t) = −
′ a 1

2
(−2 ′ w 1 )x(t) = a1w1x(t)  (11) 

 
The scaling ambiguity thus only applies to 
component activations and scalp topographies, 
not to their scalp-projections. This means that 

when comparing the activations or scalp 
topographies of multiple components, some type 
of arbitrary normalization must be done (e.g., 
normalizing activations to unit variance, 
normalizing scalp maps to unit length). 
Normalization, however, can be avoided by only 
comparing component scalp-projections. 
 
4.2.2 ICA Component Order Ambiguity 
 
In addition to IC scaling, the order of ICs is also 
arbitrary. Take for example two unmixing 
matrices found by ICA, W and W′, that are 
identical except that the first row of W equals the 
second row of W′ and vice versa. The outputs of 
the two matrices will be just as independent and 
equally valid by ICA criteria. 
 
This ambiguity illustrates how it less than 
straightforward to compare ICs from different 
ICA decompositions as it is not necessarily 
obvious which ICs in two or more ICA bases are 
equivalent. The order ambiguity is commonly 
resolved by ranking ICs in order of the magnitude 
of their scalp-projected activity (e.g., the 
magnitude of their scalp-projected variance). 
However, such rankings may not be very stable as 
one IC’s scalp-projection may be about as large as 
several others and the relative amplitudes of latent 
sources in two data sets may vary due to 
differences between participants, recording 
conditions, or task demands. Thus identifying 
homologous ICs from different decompositions is 
typically done based on component features (e.g., 
scalp topographies and activation power spectra — 
Makeig et al., 2004). 
 
4.3 Physiological Motivation for ICA 
 
While ICA was able to successfully extract 
almost all of the latent ERP sources in the 
previous example, this was because the example 
was constructed to largely meet the assumptions 
of extended INFOMAX ICA (i.e., all the neural 
sources were supergaussian, relatively large and 
few in number, and, save for two sources, 
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relatively independent of one another). The 
success of any technique for deriving LSFs to 
extract EEG sources depends upon how well the 
technique’s assumptions are met by the true data 
generators and there is good physiological 
motivation for some of ICA’s assumptions. 
Specifically there are good a priori reasons and 
some empirical evidence to think that some EEG 
sources might be independent enough for ICA to 
extract. A priori, the activity of functionally 
distinct EEG sources should be somewhat 
independent if the independent variables that they 
are sensitive to are manipulated independently by 
experimenters. For example, in a language 
comprehension task, if one source is sensitive to 
word predictability and another is sensitive to the 
concreteness of a word’s meaning, those sources 
should be at least somewhat independent if 
predictability and concreteness vary independently 
in the stimuli. Empirically, there is a great deal of 
latency variability in ERP components in the raw 
EEG (Kutas, McCarthy, & Donchin, 1977; 
Makeig et al., 2004), which should also produce a 
degree of independence. In addition, there is 
evidence that the correlation between the 
activities of nearby cerebral cortical areas (as 
measured by 20 to 240 second segments of 
unaveraged local field potentials) can fall off on 
the order of millimeters in the awake brain 
(Destexhe, Contreras, & Steriade, 1999). 
 
In practice, ICA’s general assumption of non-
Gaussian or temporally structured sources is valid 
to some extent. If all EEG sources were Gaussian, 
then EEG ICs (i.e., ICs that appear to correspond 
to EEG sources rather than EEG artifacts) derived 
by ICA algorithms such as extended INFOMAX 
ICA (Lee et al., 1999) and Fast ICA (Hyvärinen, 
1999) would not be reliable and there are 
examples of reliable EEG ICs found by these 
algorithms (Groppe, 2007; Himberg, Hyvärinen, 
& Esposito, 2004). Likewise, if all EEG sources 
had identical normalized power spectra, then the 
EEG ICs derived by SOBI would not be reliable 
(Belouchrani et al., 1997) and there are examples 
of reliable EEG ICs from SOBI (Groppe, 
unpublished; Tang, Pearlmutter, Malaszenko, 

Phung, & Reeb, 2002). Thus these assumptions 
are generally met to some extent though there 
may be some EEG sources that violate the 
assumptions of particular ICA algorithms and are 
inextricable by those algorithms. The more 
specific ICA assumptions about the statistical 
nature of the sources (i.e., specific source 
probability density functions or diagonal 
autocorrelation matrices at specific time lags) are 
more difficult to justify, but they may not be so 
problematic as many sources may fit the 
assumptions of multiple algorithms. Also, 
different ICA algorithms may be used to cross-
check assumptions. For example, if an algorithm 
that can find Gaussian sources (e.g., SOBI) does 
not find any such sources in a data set, one is 
more justified in using an algorithm that assumes 
non-Gaussian sources (e.g., Extended INFOMAX 
ICA). 
 
The final potentially problematic assumption of 
ICA is the assumption of a specific number of 
sources (typically as many as there are 
electrodes). As mentioned earlier, it impossible to 
know how many neural and non-neural electrical 
sources significantly contribute to scalp 
potentials. Research on simulated EEG data 
(Ghahremani et al., 1996; Kobayashi et al., 1999; 
Makeig et al., 2000) has shown that ICA is 
capable of accurately extracting sufficiently 
prominent EEG sources when there are more 
sources than electrodes. 
 
4.4 Past ICA Findings 

The physiological motivation for using ICA to 
decompose the EEG is corroborated by several 
successful applications. ICA was first applied to 
the EEG by Scott Makeig, Tzyy-Ping Jung, and 
colleagues in 1996 (Makeig, Bell, Jung, & 
Sejnowski, 1996). Since then ICA has proved 
useful for removing EEG artifacts such as 
potentials caused by blinks and 60 Hz line noise 
(Joyce, Gorodnitsky, & Kutas, 2004; Jung, 
Makeig, Humphries et al., 2000; Jung, Makeig, 
Westerfield et al., 2000; Tang et al., 2005), 
improving the discrimination of event-related 
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activity in the raw EEG/MEG9 (Serby, Yom-Tov, 
& Inbar, 2005; Tang, Pearlmutter, Malaszenko, & 
Phung, 2002; Tang et al., 2005; Tang, Sutherland, 
& Wang, 2006; but see Section 4.5.2), and 
accurately isolating individual early sensory 
(Tang et al., 2005) and epileptic spike sources 
(Kobayashi, Merlet, & Gotman, 2001). 
 
It also appears that ICA is useful for extracting 
ERP sources as multiple studies have found that 
ICA decomposes the EEG/MEG and ERPs into 
physiologically plausible, functionally distinct 
components (Debener, Ullsperger et al., 2005; 
Makeig et al., 1999; Makeig et al., 2004; Onton, 
Delorme, & Makeig, 2005; Tang, Pearlmutter, 
Malaszenko, Phung, & Reeb, 2002). Since the true 
sources of ERPs are generally unknown it is 
difficult to evaluate the accuracy of these 
decompositions but their physiological plausibility 
is often quite compelling. Probably the most 
convincing extraction of a source of a “cognitive 
ERP” to date is a class of ICs of the “error-related 
negativity” (ERN) ERP component elicited by 
erroneous experimental participant responses 
(Debener, Ullsperger et al., 2005). Debener and 
colleagues found a class of central medial ICs that 
contributed to the ERN and whose single trial 
activity predicted future behavior. Moreover, the 
average topography of the ICs and single trial IC 
activity was consistent with simultaneously 
recorded hemodynamic activity in the rostral 
cingulate zone. Other compelling types of ICs have 
also been reported. For example, Makeig and 
colleagues (Delorme, Westerfield, & Makeig, 
2007; Makeig et al., 2004; Onton, Westerfield, 
Townsend, & Makeig, 2006) applied ICA to the 
P300 ERP component (for reviews see Donchin & 
Coles, 1988; Nieuwenhuis, Aston-Jones, & Cohen, 
2005) elicited in a visual oddball paradigm. They 
accounted for the P300 with several classes of ICs. 
                                                 
9 MEG is primarily the linear combination of the magnetic 

fields generated by the synaptic activity of cortical 
pyramidal cells (Baillet et al., 2001; Kutas & Dale, 
1997). LSFs are just as potentially useful for extracting 
MEG sources as EEG sources. Some applications of 
ICA to MEG data are included in this article as evidence 
of ICA’s ability to extract latent sources. 

These included “P3f” components that were 
frontally distributed and appeared to be related to 
decision making/response selection, left and right 
centrally distributed “mu” components that possibly 
reflected tactile feedback, “central medial” 
components whose scalp distributions were similar 
to the P3a/Novelty P3 component related to 
attentional orienting (Friedman, Cycowicz, & Gaeta, 
2001), and “P3b” components that accounted for a 
great deal of the P300. 
 
4.5 ICA Caveats 
 
4.5.1 Component Reliability 
 
While ICA is a potentially powerful tool for ERP 
analysis, there are some caveats that should be 
kept in mind when interpreting ICA results. The 
first of these is that any given IC may not be 
reliable. Since ICs are learned from the statistics 
of a data set, noisy estimates of those statistics or 
local minima during training (for iterative ICA 
algorithms like extended INFOMAX ICA) may 
lead to spurious ICs. Moreover, there are some 
sources that are impossible for ICA to reliably 
decompose (e.g., two white Gaussian sources or 
two out of phase sine waves — Bell & Sejnowski, 
1995; Meinecke, Ziehe, Kawanabe, & Müller, 
2002) as multiple decompositions produce 
equally independent components. Consequently, 
evidence of ICA reliability is critical for the 
credibility of ICA results and can be assessed by 
replicating an analysis on comparable data sets. 
For example, the reliability of EEG ICs can been 
established by finding similar ICs across multiple 
participants (Debener, Ullsperger et al., 2005; 
Makeig et al., 2004; Onton et al., 2005) or subsets 
of a data set (Groppe, 2007; Makeig et al., 1999). 
 
4.5.2 Component Accuracy 
 
The second caveat to the interpretation of LSFs 
derived by ICA (or any other technique — see 
below) is that because we rarely know what the 
latent sources of a segment of EEG/ERP are, it is 
difficult to know how accurately ICs capture 
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those sources. In the absence of this knowledge, 
the accuracy of ICs must be assessed indirectly. 
 
One method that has been used to assess IC 
accuracy is the degree to which the topography of 
an IC is consistent with a single ECD or a 
bilaterally symmetric pair of ECDs10, which is 
quantified by modeling the source of the IC 
(Section 6). The motivation for this criterion is 
the theory that “an independent component should 
account for synchronous activity within a 
connected cortical domain, and accordingly its 
scalp projection should match a single equivalent 
current dipole (or sometimes two bilaterally 
symmetric dipoles)” (Debener, Makeig, Delorme, 
& Engel, 2005, pg. 312). In practice, the ICs that 
account for the most EEG and ERP variance often 
meet this criterion (e.g., Figure 18: IC 9, IC 12, & 
IC 14). The number of such “dipolar” ICs is quite 
striking, especially when compared to the results 
of another statistically based method for 
decomposing the EEG, principal component 
analysis (e.g., Figures 19-20; Makeig & Delorme, 
2004), which is discussed in the next section. 
 
Nevertheless, dipolarity is probably not a 
necessary condition for IC accuracy. For example, 
the aforementioned P300, perhaps the single most 
studied ERP phenomena, is possibly largely 
produced by the widespread release of 
norepinephrine in cerebral cortex (Nieuwenhuis et 
al., 2005). If this is the case, then the P300 is 
produced by the activity of multiple, distributed 
patches of cerebral cortex whose activity should 
be highly correlated and the topography of this 
contribution to the P300 might be non-dipolar. On 
the other hand, dipolarity is probably not a 
sufficient criterion for IC accuracy either, as 

                                                 
10 Topographies that are consistent with a single ECD have 

either a single focus (e.g., Figure 18: IC 12) or two foci 
of opposite polarity on opposite sides of the head (e.g., 
Figure 18: IC 14). Topographies that are consistent with 
a bilaterally symmetric pair of ECDs appear to be the 
sum of a bilaterally symmetric pair of such topographies 
(e.g., Figure 18: IC 7). In contrast, “non-dipolar” 
topographies exhibit a complicated pattern of foci (e.g., 
Figure 18: IC 44). 

dipolar ICs may simply reflect the fact that the 
potentials recorded by nearby electrodes tend to 
be correlated. Consider, for example, the 
components of the principal square root of the 
estimated covariance matrix (i.e., “psPCs”) that 
the EEGLAB toolbox (Delorme & Makeig, 2004) 
implementation of ICA uses as its first learning 
step. The set of psPCs decomposes a data set into 
temporally uncorrelated components and can be 
thought of as a version of principal component 
analysis (next section). The topographies of the 
psPCs of a participant’s EEG data from a visual 
oddball and sentence comprehension experiment 
(Groppe, 2007) are displayed in Figure 21. Many 
of the topographies appear to be dipolar. Indeed, 
in a comparison of multiple statistically-based 
algorithms for decomposing the EEG, Makeig 
and Delorme (2004) found that the topographies 
of the psPCs produced more dipolar components 
on average than any of the ICA or other PCA 
algorithms in their analysis. However, while ICA 
appears to have successfully extracted some 
readily identifiable EEG artifacts as single 
components, the psPCs fail to do so. For example, 
IC 8 (Figure 18) corresponds to horizontal eye 
movement potentials, but the psPC decomposition 
splits the artifact into two components, psPC 21 
and 36 (Figure 21). Similarly, eye blink potentials 
are well captured by a single independent 
component (IC 1 — Figure 18), but are split 
among several psPCs (1, 2, 3, 5, 7, 8, 9 — Figure 
21). This indicates that the psPCs are not 
accurately extracting large EEG artifacts, which 
suggests that they are not accurately extracting 
smaller EEG sources either. 
 
More compelling evidence for IC accuracy can 
come from corroborating findings from other 
indices of brain function. Although the 
relationship between other measures of brain 
function (e.g., fMRI, intracranial EEG) and the 
EEG is ambiguous (Liu, Belliveau, & Dale, 
1998), compelling converging evidence is 
possible. As mentioned previously a class of ICs 
of the error-related negativity (Debener, 
Ullsperger et al., 2005) was consistent with 
simultaneously recorded hemodynamic activity in 
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the rostral cingulate. Similarly, ICs corresponding 
to the SI sensory evoked potential elicited by 
median nerve stimulation have been found to be 
consistent (within 2 cm on average) with 
estimates of SI generator locations from previous 
EEG, MEG, and fMRI studies (Tang et al., 2005). 
 
An IC’s credibility is also boosted by evidence 
that it exhibits a tighter relationship to 
experimental variables and events than scalp 
recordings. For example, Tang and colleagues 
have shown that the activations of ICs 
corresponding to sensory evoked potentials 
showed less trial-to-trial variability than the 
electrode recordings of those sensory evoked 
potentials (Tang et al., 2005). Moreover, the 
presence of different types of sensory evoked 
components was easier to detect in the activations 
of such ICs than in the scalp data (Serby et al., 
2005; Tang, Pearlmutter, Malaszenko, & Phung, 
2002; Tang et al., 2006). Such evidence may 
suggest that the ICs are a more accurate measure 
of source activity than the scalp electrodes. 
However, the comparisons by Tang and Serby et 
al. were all made using scalp data that had not 
been screened for EEG artifacts. Thus it is not 
clear if these results indicate anything more than 
ICA’s ability to isolate EEG artifacts. 
 
Finally, the most convincing evidence that a class 
of ICs is accurate would be evidence that 
confirmed predictions about the behavior of such 
ICs. If a class of ICs truly reflects a functionally 
independent EEG process, then it should be 
possible to design experiments that selectively 
manipulate that particular function. For example, 
as mentioned above, Makeig and colleagues 
(2004) found a bilateral class of mu ICs in data 
from a visual oddball paradigm, which generated 
a post-response potential they suggested might 
index tactile feedback from pressing a button in 
the task. This putative class of IC and 
interpretation could be readily tested with 
additional experiments. For instance, if the 
interpretation is correct then mu ICs with 
different topographies should be obtained in 
comparable paradigms requiring a foot response 

(because cortical motor areas that control the 
hands and feet are spatially quite distinct) and no 
such post-response mu IC potential should be 
found when there is no tactile feedback. If 
predictions like these are confirmed by further 
experiments, it would increase the credibility of 
this class of IC. 
 
 
5. PCA for Deriving LSFs 
 
An alternative method for finding a basis of LSFs 
to decompose ERPs into components is principal 
component analysis, (PCA — see Dien & 
Frishkoff, 2005). In the ERP literature, PCA is 
often called “spatial PCA” when used to find 
spatial filters. Like ICA, PCA learns a basis from 
the statistics of the data such that each 
component is somewhat independent of other 
components and is subject to the same 
ambiguities and caveats as ICA. PCA differs 
from ICA in that it is only sensitive to second 
order statistics (i.e., variance/ covariance) and 
ignores temporal structure (e.g., autocorrelation). 
In other words, PCA only assumes that the 
sources of a data set are temporally uncorrelated, 
which is a weaker statistical assumption than that 
of ICA algorithms (Footnote 6). Because of the 
weaker assumption, the results of PCA are 
fundamentally ambiguous, as for any data set 
there are an infinite number of bases of LSFs 
that will unmix the data into uncorrelated 
components (Footnote 8). The canonical way to 
resolve this ambiguity is to define the first 
principal component (PC) as the LSF that 
accounts for the most variance of any possible 
LSF. The second PC captures the most variance 
of any possible LSF that is orthogonal to and 
uncorrelated with the first PC. The third PC 
captures the most variance of any possible LSF 
that is orthogonal to and uncorrelated with both 
the first and the second PC, and so on. Thus, the 
canonical PCA solution produces a basis of 
orthogonal LSFs whose outputs are uncorrelated 
and the top q components account for the 
maximum amount data variance. 
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Often, the canonical PCA solution is modified by 
ignoring the bottom PCs and rotating the top few 
PCs to produce a new basis. For example, the 
varimax rotation produces orthogonal components 
that tend to have extreme mixing/unmixing vector 
weights11 (e.g., strong weights to some electrodes 
and weak weights to the rest). When applied to 
EEG/ERP data, this is equivalent to assuming that 
EEG/ERPs are composed of only a few 
uncorrelated components, with maximally 
different (i.e., orthogonal) topographies with a 
highly variable distribution (i.e., extreme gain 
vector weights). 
 
PCA can be understood in the same generative 
model framework as ICA. In this framework, 
PCA is the optimal unmixing of a data set when 
the sources, u, are white Gaussian random 
variables, possibly less than the number of 
electrodes, and embedded in spherical white 
Gaussian sensor noise, z (Roweis & Ghahramani, 
1999). 
 
x(t) = Au(t) + z(t)     (12) 
 
If this were an accurate model of the EEG/ERPs, 
then PCA would be better than ICA for deriving 
LSFs. However, this is clearly not the case. The 
fact that ICA reliably finds the same components 
in a data set shows that EEG/ERP data sets are 
not strictly white or Gaussian (Section 4.5.1). 
Sensor noise is also not uniform across all 
electrodes. Peri-ocular and temporal electrodes 
tend to have more noise than other electrodes in 
EEG/ERP data sets due to blinks/eye movements 
and muscle activity. Finally, it is unlikely that 
EEG sources have orthogonal (maximally 
different) topographies and they may not fit the 
desideratum of rotations. For example, EEG 
sources that are deep within the head can have 
very broad scalp distributions with rather uniform 
weights at many electrodes. A varimax rotation 
would not be likely to return such a component. 

                                                 
11 PCA unmixing and mixing vectors are qualitatively the 

same. In other words, they are parallel and the polarity 
and magnitude of one is the inverse of that of the other. 

Although the assumptions of ICA are a priori 
generally more plausible than those of PCA, it is 
currently impossible to say if ICA or PCA are 
typically more accurate at extracting ERP sources, 
since, as mentioned previously, we rarely know 
what the sources of an ERP are. To our 
knowledge, the most careful comparison of ICA 
and PCA derived ERP decompositions (Makeig et 
al., 1999), found that the 3 main ICs of the P300 
correlated more strongly with reaction time and 
were more reliable than their PCA equivalents. 
Some researchers have compared ICA and PCA's 
ability to remove artifacts from EEG recordings. 
In contrast to ERP sources, artifact components 
reflecting blinks, eye movements, muscle activity, 
and line noise are readily identifiable and ICA 
appears to be much better at capturing these 
sources as distinct components (Jung, Makeig, 
Humphries et al., 2000; Tang et al., 2005). 
 
 
6. Source Localization for Deriving LSFs 
 
A very different alternative for decomposing 
ERPs into components using LSFs is 
anatomically-based source localization (Baillet et 
al., 2001). In contrast to ICA, which learns filters 
using only the statistics of scalp potentials, source 
localization builds a model of the EEG gain 
matrix that can be based on a participant’s 
anatomy, information about probable source 
locations, the statistics of the scalp potentials, and 
the biophysics of EEG generation. Once this gain 
matrix, or “forward model,” has been derived, an 
“inverse model,” a set of LSFs, can be computed 
which estimates the activity of the putative 
sources. The forward and inverse models are 
analogous to the ICA mixing and unmixing 
matrices. 
 
One of the most popular methods for source 
localization is to approximate the brain, skull, and 
scalp with a series of concentric, homogeneous 
spheres and to assume a handful of dipolar 
generators (Baillet et al., 2001). The locations and 
orientations of the equivalent current dipoles 
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(ECDs) are then iteratively fit to the data until a 
sufficiently small degree of error is reached. The 
dipoles provide a forward model,  , which is an 
n x m matrix that maps the activity of m sources, 

ˆ G

ˆ y , to the potentials at n electrodes, x, which are 
embedded in noise, z. 
 
x(t) = ˆ G ̂  y (t) + z(t)     (13) 
 
To estimate the source activities from the data, ˆ y , 
typically the pseudoinverse of   is used. ˆ G
 
ˆ y (t) = ( ˆ G T ˆ G )−1 ˆ G T x(t)    (14) 
 
This minimizes the sum squared error between 
the model and the scalp data. 
 
While such an iterative method assumes fewer 
sources than electrodes, a different approach is to 
assume more sources than electrodes, which 
removes the need for iteration. An example of 
such a method is dynamic statistical parametric 
mapping (DSPM — Dale, et al., 2000; Liu, et al., 
2002). DSPM approximates the cortical surface, 
inner skull, outer skull, and skin with a boundary 
element model and a dipolar EEG source is 
placed about every 1 cm on the cortical surface, 
oriented perpendicular to it. This approach 
provides a forward model,  , with around three 
thousand sources per hemisphere. Given the 
forward model, assumptions about the 
covariance/variance of the sources and noise, an 
inverse model can be computed: 

ˆ G

 
ˆ y (t) = R ˆ G T ( ˆ G R ˆ G T + C)−1x(t)  (15) 
 
where R and C are the covariance matrices of the 
neural and noise sources respectively. This 
estimation of source activity is optimal when the 
sources and noise are Gaussian12. To correct for 
                                                 

                                                                                 
12 This might be a reasonable assumption for localizing 

ERPs as they are derived from the mean of a large 
number of epochs of EEG (usually between 30 and 100). 
Thus, by the central limit theorem, the sampling 
distribution of the mean source and noise activity at each 

the additive noise, an additional step is taken: the 
estimated activity of each source is divided by the 
standard deviation of the noise contributing to 
that activity. 
 
Relative to ICA, the advantages of source 
localization for extracting individual EEG/ERP 
sources are that one can make use of knowledge 
about the location of these sources and the statistics 
of the noise when it is available. Furthermore, one 
does not have to make strong independence 
assumptions, localization does not suffer from 
scaling ambiguities, and it is easier to compare 
results across participants, studies, and other 
neuroimaging methods (e.g., functional magnetic 
resonance imaging, intracranial recordings). 
 
The disadvantage of source localization is that 
inaccuracies in the forward model and statistical 
assumptions may lead to erroneous results. For 
example, while the boundary element model 
used by DSPM is a more accurate 
approximation of the head than the concentric 
spheres used in iterative dipole fitting, both 
ignore the fact that some parts of the brain are 
anisotropic and that different regions of skull 
differ in their conductive properties (Baillet et 
al., 2001). More problematic for source 
localization are assumptions about the number 
and locations of sources, which are generally 
difficult to validate. Iterative dipole fitting may 
produce accurate results when fitting a very 
small number of dipoles (e.g., Di Russo, 
Martinez, Sereno, Pitzalis, & Hillyard, 2002). 
However, as the number of dipoles increases, 
the stability of the solutions rapidly degrades 
and different initial estimates of source 
locations and orientation can produce very 
different results (Baillet et al., 2001). While 
DSPM does not the have the stability problems 
of iterative solutions, by potentially greatly 

 
time point should be approximately Gaussian if the 
distribution of their single trial values does not 
remarkably deviate from a Gaussian distribution 
(Wilcox, 2002). Gaussian assumptions are less likely to 
be accurate for localizing single epochs of EEG or ERPs 
constructed from a limited number of epochs. 
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over-estimating the number of sources, DSPM 
will sub-optimally localize activity (Liu et al., 
2002). 
 
Source localization and ICA are complementary 
as they exploit different sources of information 
and can make compatible assumptions (i.e., 
source localization depends on strong anatomical 
assumptions and ICA depends on strong statistical 
assumptions). Given this, localization and ICA 
can be used to corroborate one another's results.  
 
Moreover, ICA can function as a useful 
preprocessing step in iterative source localization. 
Iterative source localization works best when 
modeling data with few dipoles. As mentioned 
previously, the topographies of many ICA 
components are consistent with a single dipole or 
dual-symmetric dipolar source (e.g., 28% of non-
artifact ICs were consistent with a single dipole in 
one 64 electrode study — Debener, Makeig et al., 
2005). Thus while an EEG/ERP phenomenon 
may be too spatially complex for iterative 
localization to find a reliable solution, localizing 
ICs that contribute to that ERP may simplify the 
problem enough to make it tractable and thereby 
improve accuracy. In fact, research on simulated 
and real data have shown that ICA can improve 
localization accuracy relative to conventional 
iterative methods in some situations (Kobayashi, 
Akiyama, Nakahori, Yoshinaga, & Gotman, 
2002; Tang, Pearlmutter, Malaszenko, Phung, & 
Reeb, 2002) though not all (Kobayashi et al., 
2001). 
 
Conversely, source localization may assist ICA 
(Onton et al., 2005). Localizing ICs will remove 
ICA's scaling ambiguity, facilitate comparison 
with results from other imaging methods, and 
ease the comparison of ICs across participants. 
The last of these benefits results from the fact that 
anatomically equivalent sources in two different 
participants can have remarkably different scalp 
distributions due to functionally irrelevant 
differences in cortical folding and head shape. 
Localizing can correct for these differences and 
can reduce the dimensionality of an IC’s 

topography (e.g., from 64 electrodes to 3 
Cartesian coordinates), which facilitates analysis 
(e.g., clustering) and visualization. 
 
 
7. Temporal PCA for Defining ERP 
Components 

 
In contrast to the previously mentioned methods 
for extracting EEG/ERP sources with LSFs, some 
researchers have used linear temporal filters 
(LTFs) derived by PCA to decompose ERPs into 
components. This method, called “temporal 
PCA,” is simply PCA (see Section 5) where the 
individual time samples (e.g., 100, 104, 108 ms 
post-stimulus) are treated as random variables 
(Dien & Frishkoff, 2005). As typically applied, 
the generative model for the data is: 
 
x(epc ) = Au(epc ) + z(epc )    (16) 
 
where each element of the vectors x (scalp data), 
u (source), and z (spherical white Gaussian noise) 
represents a different time sample and epc indexes 
an electrode, e, on participant p in experimental 
condition c. 
 
Applied this way, PCA decomposes ERPs into 
components whose time courses are fixed, 
orthogonal to one another, and whose 
topographies can change across experimental 
conditions and participants. As with spatial PCA, 
the top few PCs account for the great bulk of data 
variance and may be rotated to be “simpler,” 
while the lower PCs are ignored. 
 
In contrast to LSFs, temporal PCA is not well 
motivated physiologically. According to the 
biophysics of ERP generation, ERPs are a linear 
combination of temporally varying source activity 
with fixed topographies. Thus, sets of LSFs can 
potentially extract some of those sources. Nothing 
about the physiology of ERP generation suggests 
that it makes sense to think of ERPs as linear 
combinations of temporally fixed waveforms with 
fluid topographies. In fact such components violate 
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conventional definitions of ERP components as 
having fixed scalp distributions but varying 
latencies. Because of this lack of physiological 
justification, LSFs are more suitable for defining 
ERP components. 
 
 
8. Summary 
 
If an EEG phenomenon is generated by distinct 
patches of cerebral cortex that produce at least 
somewhat distinct topographies, linear spatial 
filters (LSFs) can potentially extract those sources. 
However, because of the ambiguous relationship 
between scalp electric potentials and their neural 
and non-neural sources, it is difficult to know how 
to derive LSFs that successfully do this. By 
making assumptions about the sources of scalp 
electric potentials it is possible to derive successful 
LSFs if the assumptions are valid. 
 
One technique for deriving LSFs from EEG data 
is independent component analysis (ICA), which 
learns LSFs by making assumptions about the 
statistics of the underlying generators. More 
specifically, ICA assumes that the underlying 
generators are temporally independent and 
somehow non-Gaussian or temporally structured. 
In addition, ICA, as typically applied to EEG 
data, assumes that the number of sources equals 
the number of electrodes. There is both a priori 
and empirical evidence that ICA assumptions 
about the statistics of the sources are somewhat 
valid. Moreover, in practice, ICA appears to be 
able to successfully extract EEG artifacts (e.g., 
blinks, muscle potentials) and ICA often derives 
EEG components that are compellingly 
physiologically plausible. Thus it appears that 
ICA may be able to accurately extract some EEG 
sources. However, the results of ICA, or any 
other technique for deriving LSFs, should be 
qualified by the fact that they may be erroneous 
due to inaccurate assumptions and should be 
validated by converging evidence from other 
methods and tested predictions. Moreover, since 
ICA LSFs are learned from the statistics of a 

data set, it is important to assess the reliability of 
the derived LSFs. 
ICA differs from two other methods for deriving 
LSFs to extract EEG sources, principal component 
analysis (PCA) and source localization. Like ICA, 
PCA derives LSFs by assuming that the sources of 
an EEG data set are somewhat temporally 
independent. Specifically, PCA assumes that the 
sources are simply uncorrelated, which is a weaker 
form of independence than is assumed by ICA. 
Because of the weaker assumption, PCA results 
are ambiguous and users are forced to make 
additional assumptions (e.g., orthogonal LSFs and 
highly variable filter weights) to resolve the 
ambiguity. These additional assumptions are 
harder to justify than the stronger statistical 
assumptions of ICA and there is some evidence 
that ICA is better at extracting latent non-neural 
and neural sources of EEG data sets. Moreover, 
principal components are just as subject to the 
concerns of component validity and reliability as 
independent components. Thus ICA seems to be a 
more promising approach for extracting EEG 
sources though clearly more comparisons of the 
two methods need to be done. 
 
In contrast to ICA and PCA, source localization 
relies upon an anatomical model of EEG 
generation to derive LSFs (in addition to 
assumptions about source and/or noise statistics). 
The anatomical model provides some advantages 
over ICA and PCA in that one does not have to 
make strong independence assumptions, 
localization does not suffer from scaling 
ambiguities, and it is easier to compare results 
across participants, studies, and other 
neuroimaging methods (e.g., functional magnetic 
resonance imaging, intracranial recordings). 
However, inaccuracies in the anatomical model 
may lead to erroneous results, and since the 
locations of the generators of EEG phenomena are 
generally not known with much certainty, this can 
be a serious problem for source localization. 
 
Finally, an alternative method to LSFs for parsing 
ERPs into components is “temporal principal 
component analysis” (tPCA), which extracts 
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ostensible ERP components with linear temporal 
filters (LTFs). As typically applied, PCA 
decomposes ERPs into components whose time 
courses are fixed, orthogonal to one another, and 
whose topographies can change across 
experimental conditions and participants. In 
contrast to LSFs, temporal PCA is not well 
motivated physiologically as nothing about the 
biophysics of EEG generation suggests that it 
makes sense to think of ERPs as linear 
combinations of temporally fixed waveforms with 
fluid topographies. In fact such components violate 
conventional definitions of ERP components as 
having fixed scalp distributions but varying 
latencies. Because of this lack of physiological 
justification, LSFs are more suitable for defining 
ERP components.  ■ 
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Table 1 —  (A) Correlation between the hypothetical source ERPs visualized in Figure 7. (B) Correlation between the 
hypothetical source unaveraged activations from which the source ERPs in Figure 7 are derived. 
 
A: Source ERP Correlation (Pearson’s r) 

y1 1.00        

y2 .61 1.00       

y3 -.56 -.71 1.00      

y4 .23 .07 .11 1.00     

y5 .14 .25 -.33 -.31 1.00    

y6 .28 .20 -.04 .39 -.42 1.00   

y7 .16 .32 -.14 0 .02 .11 1.00  

y8 .15 .26 -.34 -.32 .99 -.41 .02 1.00 

 y1 y2 y3 y4 y5 y6 y7 y8 

 
B: Source EEG Correlation (Pearson’s r) 

y1 1.00        

y2 -.01 1.00       

y3 -.01 .03 1.00      

y4 .04 -.03 -.01 1.00     

y5 -.02 .01 .03 -.03 1.00    

y6 .01 .03 .02 .04 0 1.00   

y7 .01 .05 0 .03 .01 0 1.00  

y8 -.01 .02 .02 -.02 .83 .01 .01 1.00 

 y1 y2 y3 y4 y5 y6 y7 y8 
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Table 2 —  Gain vector similarity of the hypothetical neural ERP sources visualized in Figure 10. Similarity is measured as 
the cosine of the angle between two gain vectors, rcos (see Footnote 2). 
 
Source Gain Vector Similarity (rcos) 

g1 1.00        

g2 .96 1.00       

g3 .37 .56 1.00      

g4 .18 .37 .67 1.00     

g5 .03 .02 -.18 .30 1.00    

g6 .88 .90 .65 .21 -.19 1.00   

g7 -.89 -.84 -.19 -.14 -.29 -.66 1.00  

g8 .02 -.13 -.24 -.41 .15 .04 .04 1.00 

 g1 g2 g3 g4 g5 g6 g7 g8 
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Table 3 —  Topography and activation similarity of each IC and its analogous source (from the hypothetical data and ICA 
decomposition presented in Figures 7-14, 16-17). ICs were paired with sources according their topographies. The IC and 
source with the most similar topographies were paired first. Then, of the remaining ICs and sources, the IC and source with 
the most similar topographies were paired and so on until each IC was paired with exactly one source. Similarity is defined as 
the cosine of the angle between feature vectors, rcos (see Footnote 2). The similarities in the second table (B) were computed 
after removing the 12 sensor noise sources. 
 
A: Similarities Between ICs and Sources 

IC Best Source Match Topography rcos ERP rcos EEG rcos 

1 1 .99 .93 .74 

2 2 1.00 .92 .88 

3 3 .99 .99 .95 

4 4 1.00 .98 .98 

5 5 .90 .99 .97 

6 6 .97 .92 .83 

7 7 .97 .91 .86 

8 8 .84 .94 .52 

9 12 .71 .61 .60 

10 16 .69 .77 .74 

11 18 .86 .80 .81 

12 19 .76 .86 .85 
 
B: Similarities Between ICs and Sources  
(without Sensor Noise) 

IC Best Source Match ERP rcos EEG rcos 

1 1 .98 .96 

2 2 .94 .95 

3 3 .99 .98 

4 4 .98 .99 

5 5 .99 .98 

6 6 .98 .96 

7 7 .93 .94 

8 8 .98 .65 
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Figure 1 —  A single EEG source, y1, and its projection to two electrodes, x1 and x2. The gain values between the source and 
each electrode are g1 and g2. Note the difference in voltage scale between the source and the electrodes. 
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Figure 2 —  (A) Black dots indicate scalp positions of electrodes in Figures 1 and 3. (B) The unitless gain vectors 
(topographies) of the three EEG sources in Figures 1 and 3. For visualization, each gain vector has been normalized so that 
its absolute maximal weight is 1. (C) Topographies of the scalp potentials from Figure 1 at four points in time. Because there 
is only one source, the topographies are identical (i.e., the ratio of the potentials at any two points on the scalp is constant). 
(D) Topographies of the scalp potentials from Figure 3 at four points in time. Because there are multiple somewhat 
independent sources with distinct topographies, the topography of the scalp potentials changes across time. 
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Figure 3 —  Three EEG sources (y1 ,y2 , and y3), and their combined projections to two electrodes, x1 and x2. Note the 
difference in voltage scale between the sources and the electrodes. 
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Figure 4 —  (A) The output, u, of a linear spatial filter, w, applied to the potentials at two electrodes from Figure 3. Note the 
difference in voltage scale between the electrodes and the linear spatial filter (LSF). (B) The gain vectors (g1, g2, g3) of the 
three sources in Figure 3 and the gain vector of the LSF, w. Since w is nearly perpendicular to g2 and g3, and nearly parallel 
to g1, the filter output closely correlates with that of Source y1 (shown in Figure 3). 
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Figure 5 —  (Left Column) Two hypothetical EEG sources. A scatter plot of the source activity (Left Column-Bottom) 
illustrates a degree of independence between the sources. (Middle Column) The combined projection of the two sources at 
two scalp electrodes. The potentials at the two electrodes are highly correlated. (Right Column) The output of two linear 
spatial filters perfectly match the original sources and are thus somewhat independent. Blue arrows represent gain weights. 
Green arrows represent filter weights. Scale of LSF output is arbitrary (Section 4.2.1). 
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Figure 6 —  Examples of Gaussian, supergaussian, and subgaussian distributions. All distributions are zero mean and unit 
variance. Supergaussian random variables (in this case one with a Laplacian pdf) are more likely to take values close to the 
mean or extreme values than Gaussian variables. Random samples of the electric potentials generated by occasional bursts 
of muscle activity or intermittent oscillatory brain activity have supergaussian distributions because most of the time their 
activation is near zero, but occasionally they produce very strong potentials. Subgaussian distributions (in this case one with 
a uniform pdf) are more uniformly distributed around the mean than Gaussian variables. Random samples from a sine wave 
have a subgaussian distribution. 
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Figure 7 —  Average activity of eight hypothetical sources in two experimental conditions (Red and Blue). The activity of 12 
additional noise sources are not shown. 
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Figure 8 —  (Top) A scatter plot of the mean activity of Sources 1 and 2 in the two experimental conditions shows that the 
ERPs of the two sources are correlated. (Bottom) A scatter plot of the unaveraged activity of the same sources reveals that 
the each source’s contribution to the raw EEG is somewhat independent of the other. r is Pearson’s linear correlation 
coefficient. 
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Figure 9 —  (Top) Single trial activity of Source 1 (Left) and Source 2 (Right) in both experimental conditions. Each horizontal 
line represents source activity from a single experimental trial or “epoch.” Voltage is represented with color. Single trials are 
smoothed using a 10 trial vertical moving average. (Bottom) Mean single trial activity (ERP) of Source 1 (Left) and Source 2 
(Right). Although the average activations of the two sources are somewhat similar, the single trial activations are 
uncorrelated due to the large amount of single trial variation. 
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Figure 10 —  The first eight topographies correspond to the ERP sources in Figure 7 and the last 12 correspond to sensor 
noise. Black dots indicate the locations of the 12 electrodes. For visualization, each gain vector has been normalized so that 
its absolute maximal weight is 1. Note that although the sensor noise is confined to single electrodes, their gain weights 
appear to extend beyond each electrode due to the interpolation used for visualization. 
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Figure 11 —  Mean electrode activity in two experimental conditions (Red and Blue) generated by the sources whose mean 
activations and topographies are illustrated in Figures 7 and 10, respectively. Cartoon head shows electrode locations. 
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Figure 12 —  “Difference waves” obtained by subtracting the ERPs from Condition Red from those from Condition Blue (the 
two sets of ERPs shown in Figure 11). Cartoon head shows electrode locations. 
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Figure 13 —  Independent component activity derived from the simulated EEG from which the ERPs in Figure 11 were 
derived. For visualization, the average activation of each IC has been normalized to unit variance. The activations of the first 
eight ICs are similar to those of the eight underlying neural sources (see Figure 7). 

COGSCI-ONLINE.UCSD.EDU 



INDEPENDENT COMPONENT ANALYSIS OF ERPS COGNITIVE SCIENCE ONLINE, 2008  37 

 
Figure 14 —  Mixing vectors (topographies) of the 12 independent components whose activations are shown in Figure 13. 
Black dots indicate the locations of the 12 electrodes. For visualization, each vector has been normalized so that its absolute 
maximal weight is 1. The topographies of the first eight ICs are similar to those of the eight underlying neural sources (see 
Figure 10). 
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Figure 15 —  (A) The gain vectors of a hypothetical source configuration. (B) An ideal ICA decomposition of the hypothetical 
source configuration. The mixing vectors are identical to the source gain vectors and each unmixing vector perfectly extracts 
one source’s activity from the other. (C) An imperfect ICA decomposition derived from the ideal ICA decomposition by 
corrupting Unmixing Vector 2. Unmixing Vector 1 still perfectly extracts the activity of Source 1, but Mixing Vector 1 no longer 
matches the gain vector for Source 1. Conversely, Mixing Vector 2 still matches the direction of the Source 2’s gain vector, 
but Unmixing Vector 2 will no longer perfectly extract the activity of Source 2. 
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Figure 16 —  The contribution of IC 2 (yellow) to the difference waves from Figure 12 (pink). Cartoon head shows electrode 
locations. 
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Figure 17 —  The contribution of IC 5 (yellow) to the difference waves from Figure 12 (pink). Cartoon head shows electrode 
locations. 
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Figure 18 —  Mixing vectors (topographies) of the 64 independent components derived from the EEG of a person performing 
visual oddball and sentence comprehension tasks (Groppe, 2007). For visualization, each vector has been normalized so 
that its absolute maximal weight is one and the 64 electrodes are not shown. Vector weights below the head’s equator are 
plotted progressively beyond the radius of the head. ICs are ranked in decreasing order of scalp-projected variance (summed 
across all electrodes). 
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Figure 19 —  Mixing vectors (topographies) of the 64 principal components derived from the same data from which the ICs in 
Figure 18 were derived. These PCs are the “canonical” PCs (Section 5). For visualization, each gain vector has been 
normalized so that its absolute maximal weight is one and the 64 electrodes are not shown. Vector weights below the head’s 
equator are plotted progressively beyond the radius of the head. 
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Figure 20 —  Mixing vectors (topographies) of a random rotation (Devroye, 1986, pg. 607) of the principal components 
displayed in Figure 19. Like the original PCs, this decomposition unmixes the data from which they were derived into 
uncorrelated components. For visualization, each gain vector has been normalized so that its absolute maximal weight is one 
and the 64 electrodes are not shown. Vector weights below the head’s equator are plotted progressively beyond the radius of 
the head. Random PCs are ranked in decreasing order of scalp-projected variance (summed across all electrodes). 
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Figure 21 —  Mixing vectors (topographies) of the 64 components of the principal square root of the covariance matrix of the 
same data used to derive the decompositions in Figures 18-20. Like PCs, this decomposition unmixes the data from which 
they were derived into uncorrelated components. For visualization, each gain vector has been normalized so that its absolute 
maximal weight is one and the 64 electrodes are not shown. Vector weights below the head’s equator are plotted 
progressively beyond the radius of the head. Components are ranked in decreasing order of scalp-projected variance 
(summed across all electrodes).  
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