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Abstract

Reverse-correlation is the most widely used method for mapping recep-
tive fields of early visual neurons. Wiener kernels of the neurons are
calculated by cross-correlating the neuronal responses with a Gaussian
white noise stimulus. However, Gaussian white noise is an inefficient
stimulus for driving higher-level visual neurons. We show that if the
stimulus is synthesized by a linear generative model such that its statis-
tics approximate that of natural images, a simple solution for the kernels
can be derived.

1 Introduction

Reverse-correlation (also known as white-noise analysis) is a system analysis technique for
quantitatively characterizing the behavior of neurons. The mathematical basis of reverse
correlation is based on the Volterra/Wiener expansion of functionals: If a neuron is modeled
as the functionaly(t) = f(x(t)), wherex(t) is the (one dimensional) stimulus to the neu-
ron, any nonlinearf can be expanded by a series of functionals of increasing complexity,
just like real-valued functions can be expanded by the Taylor expansion. The parameters in
the terms of the expansion, calledkernels, can be calculated by cross-correlating the neu-
ronal responses to the stimulus, provided that the stimulus is Gaussian and white (Wiener,
1958; Lee & Schetzen, 1965; Marmarelis & Marmarelis, 1978).

Reverse correlation and its variants are widely used to study the receptive field (RF) struc-
tures of the sensory systems. In vision, the circular RF’s of LGN neurons and the gabor-like
RF’s of simple cells in the primary visual cortex are revealed by calculating the first-order
(linear) kernels. Neurons with more nonlinearity, such as complex cells, can also be studied
by the second-order kernels (Szulborski & Palmer, 1990). However, reverse correlation is
rarely applied to extrastriate visual areas, such as V2. One of the many factors that limit
reverse correlation to the study of the early visual system is that Gaussian white noise is an
inefficient stimulus for driving higher order neurons, since visual features that are known
to activate these areas (Gallant et al., 1996; Hegdé & Van Essen, 2000) appear very rarely
in Gaussian white noise.
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The goal of this paper is to show that if we generate more “interesting” stimuli by training
a linear generative model from natural images, solutions to the kernels can be obtained
easily. We will proceed by first formulating the Volterra/Wiener series, describe the linear
generative model of stimulus synthesis, derive the kernels, and then compare this scheme
to other reverse-correlation methods using natural stimuli. The design of physiological
experiments using this stimulus is in progress.

2 The Wiener series and reverse correlation

For simplicity, we will only consider systems of two inputs:y(t) = f(x1(t), x2(t)).
Systems of more than two inputs (that is, driven by a stimulus of more than two pixels)
follow the same mathematical form.

The Volterra series off is given by:

y(t) = f(x1(t), x2(t))
= V0 + V1 + V2 + . . .

V0 = k1 + k2

V1 =
∫

k1(τ)x1(t − τ)dτ +
∫

k2(τ)x2(t − τ)dτ

V2 =
∫∫

k11(τ1, τ2)x1(t − τ1)x1(t − τ2)dτ1τ2

+
∫∫

k22(τ1, τ2)x2(t − τ1)x2(t − τ2)dτ1τ2

+
∫∫

k12(τ1, τ2)x1(t − τ1)x2(t − τ2)dτ1τ2

V0 is the constant term.V1 describes the linear behavior of the system. The kernelsk1(τ)
andk2(τ) are called thefirst-order kernels. V2 describes the nonlinearity involving interac-
tions between the two inputs. The kernels inV2 are called thesecond-order kernels. There
is a second-order kernel for each pair of inputs.k11(τ1, τ2) andk22(τ1, τ2) are called the
self kernelsandk12(τ1, τ2) is called thecross kernel.

In order to solve for the kernels, Wiener re-arranged the Volterra series such that the terms
are orthogonal (uncorrelated) to each other, with respect to Gaussian white inputs (Wiener,
1958; Marmarelis & Naka, 1974; Marmarelis & Marmarelis, 1978).

y(t) = f(x1(t), x2(t))
= G0 + G1 + G2 + . . .

G0 = h1 + h2

G1 =
∫

h1(τ)x1(t − τ)dτ +
∫

h2(τ)x2(t − τ)dτ

G2 =
∫∫

h11(τ1, τ2)x1(t − τ1)x1(t − τ2)dτ1τ2 − P

∫
h11(τ, τ)dτ

+
∫∫

h22(τ1, τ2)x2(t − τ1)x2(t − τ2)dτ1τ2 − P

∫
h22(τ, τ)dτ

+
∫∫

h12(τ1, τ2)x1(t − τ1)x2(t − τ2)dτ1τ2
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Figure 1: The stimuli (vectorx, upper row) are synthesized by linearly transforming a
white noise cause (vectors, lower row) via a linear generative model:x = A s. Matrix A
is learned from samples of natural images.

wherex1(t) andx2(t) are independent Gaussian white inputs, with equal power (or vari-
ance)P . The kernels are called theWiener kernels.

Lee and Schetzen (Lee & Schetzen, 1965) showed that the Wiener kernels can be calculated
by cross-correlating the neuronal responsey(t) with the inputs. For example, the first-
order kernelh1(τ) can be calculated from〈y(t)x1(t − τ)〉, self-kernelh11(τ1, τ2) from
〈y(t)x1(t−τ1)x1(t−τ2)〉, and the cross-kernelh12(τ1, τ2) from 〈y(t)t1(y−τ1)x2(t−τ2)〉1.
See (Marmarelis & Naka, 1974; Marmarelis & Marmarelis, 1978) for details.

3 Synthesis of naturalistic noise and kernel calculation

3.1 The synthesis model

Instead of using Gaussian white noise for reverse correlation, we can linearly transform
white noise such that the the statistics of the transformed images approximate those of
natural images. This should produce a better stimulus for higher-order visual neurons since
it contains more features found in nature.

More specifically, let the stimulusx(t) = (x1(t) . . . xn(t))T be synthesized by:

x(t) = A s(t)

 x1(t)
...

xn(t)

 =

[
A

]  s1(t)
...

sn(t)


wheres(t) = (s1(t) . . . sn(t))T is white. The vectors(t) is called thecauseof the stimulus
x(t). The constant matrixA can be learned from patches of natural images by various al-
gorithms, for example, Infomax Independent Component Analysis (Infomax ICA) (Bell &
Sejnowski, 1995, 1996). In this case, the causess1(t) . . . sn(t) are required to be Laplacian
distributed.

1〈 〉 denotes expectation overt
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Examples of the synthesized stimuli are illustrated in Figure 1. Visual features that occur
very rarely in white noise, such as localized edges, corners, curves, and sometimes closed
contours, are much more common after theA transformation.

Using linear generative models to synthesize stimulis for physiological experiments was
also suggested in (Olshausen, 2001).

3.2 Kernel calculation

To calculate the kernels, one can follow Wiener and orthogonalize the Volterra series with
respect to the distribution of the new stimulus, instead of Gaussian white noise. Here we
provide a much simpler solution, using a trick that is similar to the treatment of non-white
inputs in (Lee & Schetzen, 1965).

The derivation is illustrated in Figure 2. Instead of directly solving for the kernels of
systemf , we consider systemf ′, which is formed by combining systemf with the linear
generative model:f ′ = f ◦A (Figure 1b). The kernels of systemf ′ can be calculated by the
standard cross-correlation method, because its inputs(t) is white2. After f ′ is identified,
we consider a new systemf ′′, formed by combiningf ′ with the inverse of the generative
model: f ′′ = f ′ ◦ A−1 (Figure 1c). The kernels of systemf ′′ can be easily obtained by
pluggings(t) = A−1x(t) into the kernels off ′, and expressing the kernels as functions of
x(t) instead ofs(t). But sincef ′′ = f ′ ◦A−1 = f ◦A ◦A−1 = f , systemf ′′ is equivalent
to f . We therefore calculate kernels off by transforming the kernels off ′.

fAs(t) y

(a)

fAs(t) y

(b)
f'

f'A-1x(t) y

(c)
f'' = f

Figure 2: The derivation of formulas for kernels. (a) In order to calculate the kernels of
systemf , we form the systemf ′ as in (b). Kernels of systemf ′ can be obtained by the
standard cross-correlation method because the inputs is white. After the kernels off ′ are
identified, we construct systemf ′′ as in (c). The kernels of systemf ′′ can be obtained by
transforming the kernels off ′. But sincef ′′ is equivalent tof , this yields the kernels that
we wanted in the first place.

2Note thats(t) is Laplacian distributed, instead of Gaussian distributed. Kernels higher than the
first order need to be calculated according to (Klein & Yasui, 1979; Klein, 1987).
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Let φ1(τ) . . .φn(τ) be the first-order kernels off ′, obtained by cross-correlating system
response with white noises(t). The first-order kernels of the original systemf , h1(τ)
. . .h2(τ), are simply  h1(τ)

...
hn(τ)

 = A−t

 φ1(τ)
...

φn(τ)


The second-order kernels of systemf ,

hij(τ1, τ2), i, j = 1 . . . n, hij(τ1, τ2) = hji(τ1, τ2)

can be calculated fromφij(τ1, τ2), kernels of systemf ′, by the following equation:

 c11h11(τ1, τ2) . . . c1nh1n(τ1, τ2)
...

...
cn1hn1(τ1, τ2) . . . cnnhnn(τ1, τ2)

 = A−t

 c11φ11(τ1, τ2) . . . c1nφ1n(τ1, τ2)
...

...
cn1φn1(τ1, τ2) . . . cnnφnn(τ1, τ2)

A−1

wherecij = 1 if i = j, andcij = 1
2 if i 6= j. Higher order kernels can also be derived.

3.3 Notes on implementation

First, since training ICA on natural images usually produces a matrix whose row vectors
resemble gabor functions(Bell & Sejnowski, 1996), we can construct matrixA directly as
rows of gabor patches. This is similar to the synthesis model in (Field, 1994), and has the
advantage of not being biased by the particular set of images used for training. From this
point of view, the synthesized stimulus is a random mixture of edges.

Second, the synthesis method described so far generates each frame independently. If ICA
is trained on movies, we can synthesize image sequences with realistic motion (van Hateren
& Ruderman, 1998; Olshausen, 2001). The frames in the sequences are correlated, but
described by independent coefficients. The spatiotemporal kernels of neurons with respect
to synthesized movies can also be derived by the same procedure.

4 Comparison to related work

To overcome the limitations of using Gaussian white noise for reverse correlation, re-
searchers have recently started to use natural stimuli (Theunissen et al. (2000) in the audi-
tory domain, and Ringach et al. (2002) in vision). They found RF features that were not
revealed by white noise. The analysis strategy of these methods is to model receptive fields
as linears filter with zero memory, and solve for the mean square error solution by regres-
sion (DiCarlo et al., 1998) or the recursive least square algorithm (Ringach et al., 2002).
This involves estimating and inverting the spatial autocorrelation matrix of the stimulus.

The advantages of our approach using synthesized stimulus are:

• Dealing with natural images usually requires a large amount of memory and stor-
age. In our method, unlimited number of frames can be generated on demand,
once the synthesis matrixA is learned. Kernel calculation is also easier.

• In our method, all the statistics about the stimulus is contained in the matrixA,
allowing us to formulate reverse correlation in terms of the Wiener series and
derive formulas for higher order kernels, which can be important for studying the
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non-linear behavior of neurons (Szulborski & Palmer, 1990). Higher order kernels
for natural images are much more difficult to derive, due to their complicated (and
largely unknown) statistical structure. The existing regression methods for natural
image reverse correlation assume linearity and do not allow the calculation of
higher order kernels.

• The synthesis model is motivated by the redundancy reduction theory of the early
visual code (Barlow, 1961; Field, 1994; Olshausen & Field, 1996; Bell & Se-
jnowski, 1996), which states that the goal of early visual code is to transform the
retinal representations of natural images to an independent, sparse code. If this
theory is to be taken literally, the computation of the early visual system is essen-
tially A−1, and the synthesized stimulusx(t) is represented ass(t) by the first-
order system (the primary visual cortex). Under this assumption, second-order
neurons are receiving (Laplacian distributed) white noise stimuli. The kernelsφ’s
can therefore be interpreted as the kernels of higher-order systems with respect
to cortical codes, instead of retinal codes. This can be useful for interpreting the
non-linear behavior of neurons(Hyvärinen & Hoyer, 2000; Hoyer & Hyv̈arinen,
2002)

5 Discussion

We have shown how to easily derive kernels for a specific form of naturalistic noise. As this
stimulus has more of the features of natural stimulation, it should more strongly activate
visual neurons and allow us to more efficiently explore receptive fields.

We are currently designing physiological experiments to test this procedure on simple and
complex cells in the primary visual cortex of squirrels. Specifically,

• We will calculate first-order kernels using white noise, synthesized naturalistic
noise, and natural images, and compare the quality of the receptive field maps.

• Examine if second-order kernels can be reliably calculated, and see if they help to
predict the behavior of neurons.

• Analyze the relationship betweenh’s (kernels with respect to retinal code) and
φ’s (kernels with respect to cortical code, under the whitening hypothesis), and
examine if the coding hypothesis helps us understand the structure of the complex
cells.
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